Journal Home > Volume 4 , Issue 1

Recent developments in nanochemistry offer precise morphology control of nanomaterials, which has significant impacts in the field of heterogeneous catalysis. Rational design of bifunctional catalysts can influence various aspects of catalytic properties. In this review, a new class of bifunctional catalysts with a metal@silica yolk-shell nanostructure is introduced. This structure has many advantages as a heterogeneous catalyst since it ensures a homogeneous environment around each metal core, and particle sintering is effectively eliminated during high temperature reactions. The catalysts exhibit high activity and recyclability in gas- and solution-phase reactions. It is anticipated that appropriate selection of bifunctional components and optimal structural control will significantly further enhance the catalytic properties, and enable target reaction-oriented development of new catalysts.


menu
Abstract
Full text
Outline
About this article

Metal@Silica Yolk–Shell Nanostructures as Versatile Bifunctional Nanocatalysts

Show Author's information Ji Chan ParkHyunjoon Song( )
Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon305-701Republic of Korea

Abstract

Recent developments in nanochemistry offer precise morphology control of nanomaterials, which has significant impacts in the field of heterogeneous catalysis. Rational design of bifunctional catalysts can influence various aspects of catalytic properties. In this review, a new class of bifunctional catalysts with a metal@silica yolk-shell nanostructure is introduced. This structure has many advantages as a heterogeneous catalyst since it ensures a homogeneous environment around each metal core, and particle sintering is effectively eliminated during high temperature reactions. The catalysts exhibit high activity and recyclability in gas- and solution-phase reactions. It is anticipated that appropriate selection of bifunctional components and optimal structural control will significantly further enhance the catalytic properties, and enable target reaction-oriented development of new catalysts.

Keywords: metal nanoparticles, nanocatalyst, Yolk-shell nanostructure, bifunctionality, heterogeneous catalytic reactions

References(59)

1

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688-1691.

2

Boudart, M. Heterogeneous catalysis by metals. J. Mol. Catal. 1985, 30, 27-38.

3

Rolison, D. R. Catalytic nanoarchitectures—the importance of nothing and the unimportance of periodicity. Science 2003, 299, 1698-1701.

4

Zhu, J.; Somorjai, G. A. Formation of platinum silicide on a platinum nanoparticle array model catalyst deposited on silica during chemical reaction. Nano Lett. 2001, 1, 8-13.

5

Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTECH 2002, 6, 102-115.

6

Xia, Y.; Halas, N. J. Synthesis and plasmonic properties of nanostructures. Mater. Res. Soc. Bull. 2005, 30, 338-348.

7

El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257-264.

8

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-712.

9

Fukuoka, A.; Higashimoto, N.; Sakamoto, Y.; Inagaki, S.; Fukushima, Y.; Ichikawa, M. Preparation, XAFS characterization, and catalysis of platinum nanowires and nanoparticles in mesoporous silica FSM-16. Top. Catal. 2002, 18. 73-78.

10

Yang, C. -M.; Liu, P. H.; Ho, Y. -F.; Chiu, C. -Y.; Chao, K. -J. Highly dispersed metal nanoparticles in functionalized SBA-15. Chem. Mater. 2003, 15, 275-280.

11

Rioux, R. M.; Song, H.; Hoefelmeyer, J. D.; Yang, P.; Somorjai, G. A. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 2005, 109, 2192-2202.

12

Song, H.; Rioux, R. M.; Hoefelmeyer, J. D.; Komor, R.; Niesz, K.; Grass, M.; Yang, P.; Somorjai, G. A. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 2006, 128, 3027-3037.

13

Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.

14

Kim, M.; Sohn, K.; Na, H. B.; Hyeon, T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2002, 2, 1383-1387.

15

Kamata, K.; Lu, Y.; Xia, Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J. Am. Chem. Soc. 2003, 125, 2384-2385.

16

Kim, J. Y.; Yoon, S. B.; Yu, J. -S. Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells. Chem. Commun. 2003, 790-791.

17

Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin. Y. Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. Angew. Chem., Int. Ed. 2008, 47, 5806-5811.

18

Joo, S. H.; Park, J. Y.; Tsung, C. -K.; Yamada, Y.; Yang, P.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126-131.

19

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224-8227.

20

Huang, X.; Guo, C.; Zuo, J.; Zheng, N.; Stucky, G. D. An assembly route to inorganic catalytic nanoreactors containing sub-10-nm gold nanoparticles with anti-aggregation properties. Small 2009, 5, 361-365.

21

Harada, T.; Ikeda, S.; Ng, Y. H.; Sakata, T.; Mori, H.; Torimoto, T.; Matsumura, M. Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation. Adv. Funct. Mater. 2008, 18, 2190-2196.

22

Giersig, M.; Ung, T.; Liz-Marzán, L. M.; Mulvaney, P. Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Adv. Mater. 1997, 9, 570-575.

23

Zhang, Q.; Wang, W.; Goebl, J.; Yin, Y. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494-507.

24

Sun, Y.; Mayers, B.; Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641-646.

25

Liu, S.; Han, M. -Y. Silica-coated metal nanoparticles. Chem. Asian J. 2010, 5, 36-45.

26

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523-1528.

27

Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863-14870.

28

Stöber, W.; Fink, A. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62-69.

29

Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T. Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111, 4596-4605.

30

Sau, T. K.; Pal, A.; Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 2001, 105, 9266-9272.

31

Wan, Y.; Zhao, D. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821-2860.

32

Lee, J.; Park, J. C.; Bang, J. U.; Song, H. Precise tuning of porosity and surface functionality in Au@SiO2 nanoreactors for high catalytic efficiency. Chem. Mater. 2008, 20, 5839-5844.

33

Yano, L.; Fukushima, Y. Synthesis of mono-dispersed mesoporous silica spheres with highly ordered hexagonal regularity using conventional alkyltrimethylammonium halide as a surfactant. J. Mater. Chem. 2004, 14, 1579-1584.

34

Li, T.; Lee, H.; Park, K. Comparative stereochemical analysis of glucose-binding proteins for rational design of glucose-specific agents. J. Biomater. Sci., Polym. Ed. 1998, 9, 327-344.

35

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103-1169.

36

Chechik, V.; Crooks, R. M.; Stirling, C. J. M. Reactions and reactivity in self-assembled monolayers. Adv. Mater. 2000, 12, 1161-1171.

DOI
37

Gershevitz, O.; Sukenik, C. N. In situ FTIR-ATR analysis and titration of carboxylic acid-terminated SAMs. J. Am. Chem. Soc. 2004, 126, 482-483.

38

Gellman, A. J.; Shukla, N. Nanocatalysis: More than speed. Nat. Mater. 2009, 8, 87-88.

39

Park, J. C.; Bang, J. U.; Lee, J.; Ko, C. H.; Song, H. Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239-1246.

40

Liu, C. -M.; Guo, L.; Wang, R. -M.; Deng, Y.; Xu, H. -B.; Yang, S. Magnetic nanochains of metal formed by assembly of small nanoparticles. Chem. Commun. 2004, 2726-2727.

41

Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. Energy Fuels 2005, 19, 2098-2106.

42

Hu, C.; Gao, Z.; Yang, X. Fabrication of mesoporous Ni-8YSZ and its catalytic activity for carbon dioxide reforming of methane. Energy Fuels 2007, 21, 2950-2954.

43

Matsumura, Y.; Nakmori, T. Steam reforming of methane over nickel catalysts at low reaction temperature. Appl. Catal. A. 2004, 258, 107-114.

44

Sehested, J. Four challenges for nickel steam-reforming catalysts. Catal. Today 2006, 111, 103-110.

45

Ko, C. H.; Park, J. G.; Park, J. C.; Song, H.; Han, S. -S.; Kim, J. -N. Surface status and size influences of nickel nanoparticles on sulfur compound adsorption. Appl. Surf. Sci. 2007, 253, 5864-5867.

46

Nguyen, L. Q.; Abella, L. C.; Gallardo, S. M.; Hinode, H. Effect of nickel loading on the activity of Ni/ZrO2 for methane steam reforming at low temperature. React. Kinet. Catal. Lett. 2008, 93, 227-232.

47

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647-1650.

48

Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal. 2004, 223, 232-235.

49

Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley: New York, 1994.

50

Park, J. C.; Lee, H. J.; Kim, J. Y.; Park, K. H.; Song, H. Catalytic hydrogen transfer of ketones over Ni@SiO2 yolk-shell nanocatalysts with tiny metal cores. J. Phys. Chem. C 2010, 114, 6381-6388.

51

Osso-Asare, K.; Arriagada, F. J. Preparation of SiO2 nanoparticles in a non-ionic reverse micellar system. Colloids Surf. 1990, 50, 321-339.

52

Park, J.; Kang, E.; Son, S. U.; Park, H. M.; Lee, M. K.; Kim, J.; Kim, K. W.; Noh, H. -J.; Park, J. -H.; Bae, C. J.; Park, J. -G.; Hyeon, T. Monodisperse nanoparticles of Ni and NiO: Synthesis, characterization, self-assembled superlattices, and catalytic applications in the Suzuki coupling reaction. Adv. Mater. 2005, 17, 429-434.

53

Alonso, F.; Riente, P.; Yus, M. Hydrogen-transfer reduction of carbonyl compounds catalyzed by nickel nanoparticles. Tetrahedron Lett. 2008, 49, 1939-1942.

54

Alonso, F.; Riente, P.; Yus, M. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron 2008, 64, 1847-1852.

55

Park, J. C.; Lee, H. J.; Bang, J. U.; Park, K. H.; Song, H. Chemical transformation and morphology change of nickel-silica hybrid nanostructures via nickel phyllosilicate. Chem. Commun. 2009, 7345-7347.

56

Guo, Z.; Du, F.; Li, G.; Cui, Z. Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core-shell microspheres with tunable chamber structures via a self-template method. Chem. Commun. 2008, 2911-2913.

57

McDonald, A.; Scott, B.; Villemure, G. Hydrothermal preparation of nanotubular particles of a 1: 1 nickel phyllosilicate. Micropor. Mesopor. Mater. 2009, 120, 263-266.

58

Park, J. C.; Kim, J. Y.; Heo, E.; Park, K. H.; Song, H. Formation of platinum-centered yolk-shell nanostructures by sacrificial nickel spacers. Langmuir 2010, DOI: 10.1021/la101248g.

59

Somorjai, G. A.; Kliewer, C. J. Reaction selectivity in heterogeneous catalysis. React. Kinet. Catal. Lett. 2009, 96, 191-208.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 August 2010
Revised: 24 August 2010
Accepted: 31 August 2010
Published: 12 October 2010
Issue date: January 2011

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported from the Korea Basic Science Institute (KBSI) grant (No. T29330), and the Korea Science and Engineering Foundation (KOSEF), funded by the Korean Government (MEST) (No. R11-2007- 050-00000-0).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return