Journal Home > Volume 2 , Issue 12

Orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods have been synthesized by hydrothermal methods. LiMnO2 nanoparticles were synthesized by simple one-step hydrothermal method. To obtain rod-like LiMnO2, γ-MnOOH nanorods were first synthesized and then the H+ ions were completely replaced by Li+ resulting in LiMnO2 nanorods. Their electrochemical performances were thoroughly investigated by galvanostatic tests. Although the LiMnO2 nanoparticles have smaller size than LiMnO2 nanorods, the latter exhibited higher discharge capacity and better cyclability. For example, the discharge capacities of LiMnO2 nanorods reached 200 mA·h/g over many cycles and remained above 180 mA·h/g after 30 cycles. However, the maximum capacity of LiMnO2 nanoparticles was only 170 mA·h/g and quickly decreased to 110 mA·h/g after 30 cycles. Nanorods with one-dimensional electronic pathways favor the transport of electrons along the length direction and accommodate volume changes resulting from charge/discharge processes. Thus the morphology of LiMnO2 may play an important role in electrochemical performance.


menu
Abstract
Full text
Outline
About this article

Hydrothermal Synthesis of Orthorhombic LiMnO2 Nano-Particles and LiMnO2 Nanorods and Comparison of their Electrochemical Performances

Show Author's information Xiaoling Xiao1Li Wang2Dingsheng Wang1Xiangming He2Qing Peng1Yadong Li1,3( )
Department of ChemistryTsinghua UniversityBeijing100084China
Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084China
State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijing100084China

Abstract

Orthorhombic LiMnO2 nanoparticles and LiMnO2 nanorods have been synthesized by hydrothermal methods. LiMnO2 nanoparticles were synthesized by simple one-step hydrothermal method. To obtain rod-like LiMnO2, γ-MnOOH nanorods were first synthesized and then the H+ ions were completely replaced by Li+ resulting in LiMnO2 nanorods. Their electrochemical performances were thoroughly investigated by galvanostatic tests. Although the LiMnO2 nanoparticles have smaller size than LiMnO2 nanorods, the latter exhibited higher discharge capacity and better cyclability. For example, the discharge capacities of LiMnO2 nanorods reached 200 mA·h/g over many cycles and remained above 180 mA·h/g after 30 cycles. However, the maximum capacity of LiMnO2 nanoparticles was only 170 mA·h/g and quickly decreased to 110 mA·h/g after 30 cycles. Nanorods with one-dimensional electronic pathways favor the transport of electrons along the length direction and accommodate volume changes resulting from charge/discharge processes. Thus the morphology of LiMnO2 may play an important role in electrochemical performance.

Keywords: electrochemical performance, hydrothermal synthesis, nanorods, LiMnO2 nanoparticles, one-dimensional nanomaterial

References(35)

1

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Luo, J. Y.; Xia, Y. Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 2007, 17, 3877-3884.

3

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. -M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

4

Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444-7452.

5

Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A200-A203.

6

Ammunden, B.; Paulsen, J. Novel lithium-ion cathode materials based on layered manganese oxides. Adv. Mater. 2001, 13, 943-956.

DOI
7

Shaju, K. M.; Bruce, P. G. A stoichiometric nano-LiMn2O4 spinel electrode exhibiting high power and stable cycling. Chem. Mater. 2008, 20, 5557-5562.

8

Cho, J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. J. Mater. Chem. 2008, 18, 2257-2261.

9

Kim, D. K.; Muralidharan, P.; Lee, H. -W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui. Y. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 2008, 8, 3948-3952.

10

Hosono, E.; Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Lett. 2009, 9, 1045-1051.

11

Amundsen, B.; Desilvestro, J.; Groutso, T.; Hassell, D.; Metson, J. B.; Regan, E.; Steiner, R.; Pickering, P. J. Formation and structural properties of layered LiMnO2 cathode materials. J. Electrochem. Soc. 2000, 147, 4078-4082.

12

Lee, Y. S.; Sun, Y. K.; Adachi, K.; Yoshio, M. Synthesis and electrochemical characterization of orthorhombic LiMnO2 material. Electrochim. Acta 2003, 48, 1031-1039.

13

Idemoto, Y.; Mochizuki, T.; Ui, K.; Koura, N. Properties, crystal structure, and performance of o-LiMnO2 as cathode material for Li secondary batteries. J. Electrochem. Soc. 2006, 153, A418-A424.

14

Wei, Y. J.; Ehrenberg, H.; Bramnik, N. N.; Nikolowski, K.; Baehtz, C.; Fuess, H. In situ synchrotron diffraction study of high temperature prepared orthorhombic LiMnO2. Solid State Ionics 2007, 178, 253-257.

15

Wu, M. Q.; Zhang, Q. Y.; Lu, H. P.; Chen, A. Nanocrystalline orthorhombic LiMnO2 cathode materials synthesized by a two-step liquid-phase thermal process. Solid State Ionics 2004, 169, 47-50.

16

Liu, Q.; Li, Y. X.; Hu, Z. L.; Mao, D. L.; Chang, C. K.; Huang, F. Q. One-step hydrothermal routine for pure-phased orthorhombic LiMnO2 for Li ion battery application. Electrochim. Acta 2008, 53, 7298-7302.

17

Liu, Q.; Mao, D. L.; Chang, C. K.; Huang, F. Q. Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application. J. Power Sources 2007, 173, 538-544.

18

Zhou, F.; Zhao, X. M.; Liu, Y. Q.; Li, L.; Yuan, C. G. Size-controlled hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 nanorods. J. Phys. Chem. Solids 2008, 69, 2061-2065.

19

Guo, Z. P.; Konstantinov, K.; Wang, G. X.; Liu, H. K.; Dou, S. X. Preparation of orthorhornbic LiMnO2 material via the sol-gel process. J. Power Sources 2003, 119, 221-225.

20

Wu, S. H.; Yu, M. Preparation and characterization of o-LiMnO2 cathode materials. J. Power Sources 2007, 165, 660-665.

21

Lu, C. H.; Wang, H. C. Reverse-microemulsion preparation and characterization of ultrafine orthorhombic LiMnO2 powders for lithium-ion secondary batteries. J. Eur. Ceram. Soc. 2004, 24, 717-723.

22

Feng, S. H.; Xu, R. R. New materials in hydrothermal synthesis. Acc. Chem. Res. 2001, 34, 239-247.

23

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.

24

Cheng, F. Y.; Tao, Z. L.; Liang, J.; Chen, J. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater. 2008, 20, 667-681.

25

Kim, M. G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497-1514.

26

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.

27

Jang, Y. I.; Moorehead, W. D.; Chiang, Y. M.; Synthesis of the monoclinic and orthorhombic phases of LiMnO2 in oxidizing atmosphere. Solid State Ionics 2002, 149, 201-207.

28

Guo, Y. G.; Hu, J.S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.

29

Park, M. S.; Wang, G. X.; Kang, Y. K.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 46, 750-753.

30

Park, M. S.; Kang, Y. M.; Wang, G. X.; Dou, S. X.; Liu, H. K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455-461.

31

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307-309.

32

Niu, Z. W.; Bruchman, M. A.; Harp, B.; Mello, C. M.; Wang, Q. Bacteriophage M13 as a scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235-241.

33

Li, Y. G.; Wu, Y. Y. Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Res. 2009, 2, 54-60.

34

Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. α-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361-5367.

35

Armstrong, A. R.; Paterson, A. J.; Robertson, A. D.; Bruce, P. G. Nonstoichiometric layered LixMnyO2 with a high capacity for lithium intercalation/deintercalation. Chem. Mater. 2002, 14, 710-719.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 August 2009
Revised: 12 October 2009
Accepted: 12 October 2009
Published: 01 December 2009
Issue date: December 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 90606006), and the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (No. 2006CB932300).

Rights and permissions

This article is published with open access at Springerlink.com

Return