AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (886.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Nanostructured 3-D Collagen/Nanotube Biocomposites for Future Bone Regeneration Scaffolds

Edelma E. da Silva1Heloisa H. M. Della Colleta2Andre S. Ferlauto1Roberto L. Moreira1Rodrigo R. Resende1Sergio Oliveira1Gregory T. Kitten2Rodrigo G. Lacerda1( )Luiz O. Ladeira1
Departamento de FísicaLaboratório de NanomateriaisUniversidade Federal de Minas GeraisAv. Antônio Carlos662730123-970, Belo Horizonte, MG, Brazil
Departamento de MorfologiaUniversidade Federal de Minas GeraisAv. Antônio Carlos662730123-970, Belo Horizonte, MG, Brazil
Show Author Information

Graphical Abstract

Abstract

The field of bionanotechnology has been rapidly growing during the last few years and we can now envision a controllable integration between biological and artificial matter, where new biomimetic structures with a wide range of chemical and physical properties will promote the development of a novel generation of medical devices. In this work we describe a collagen/carbon nanotube composite which has the potential to be used as a scaffold for tissue regeneration. Because this biocomposite incorporates the advantageous properties of both collagen and carbon nanotubes, it has most of the characteristics that an ideal biomaterial requires in order to be used as an osteoinductive agent. This biocomposite is bioresorbable and biodegradable and has the desired mechanical rigidity while maintaining a three-dimensional(3-D) nanostructured surface. Tuned stability and swelling were achieved under fluid environments by varying the amount of carbon nanotubes (CNTs) incorporated into the composite. These variations can dictate the degree of interaction between fibroblastic cells and the biomaterials. Proof-of-concept was shown by performing an in vitro induced mineralization of hydroxylapatite crystals under physiological conditions. Furthermore, the ability to attach biofunctional groups to the CNT walls can open a new road for tissue regeneration since the combination of CNTs with specific growth factors or cellular ligands can create an environment capable of signaling and influencing specific cell functions. Our observations suggest that collagen/carbon nanotube biocomposites will have important uses in a wide range of biotechnological areas.

Electronic Supplementary Material

Download File(s)
12274_2009_9042_MOESM1_ESM.pdf (2.2 MB)

References

1

Greco, R.; Prinz, F.; Smith, R. Nanoscale Technology in Biological Systems, 1st edn.; CRC Press: Boca Raton, Florida USA, 2004.

2

Sarikaya, M.; Tamerler, C.; Jen, A. K. Y.; Schulten, K.; Baneyx, F. Molecular biomimetics: Nanotechnology through biology. Nat. Mater. 2003, 2, 577–585.

3

Wagner, V.; Dullaart, A.; Bock, A. K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol. 2006, 24, 1211–1217.

4

Liu, H. A.; Webster, T. J. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 2007, 28, 354–369.

5

Murugan, R.; Ramakrishna, S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005, 65, 2385–2406.

6

Friess, W. Collagen—Biomaterial for drug delivery. Europ. J. Pharm. Biopharm. 1998, 45, 113–136.

7

Taton, T. A. Nanotechnology—Boning up on biology. Nature 2001, 412, 491–492.

8

Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science 2002, 295, 1014–1017.

9

Lutolf, M. P.; Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.

10

Moutos, F. T.; Freed, L. E.; Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 2007, 6, 162–167.

11

Stevens, M. M.; George, J. H. Exploring and engineering the cell surface interface. Science 2005, 310, 1135–1138.

12

Hing, K. A. Bone repair in the twenty-first century: Biology, chemistry or engineering? Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci. 2004, 362, 2821–2850.

13

Freed, L. E.; Vunjaknovakovic, G.; Biron, R. J.; Eagles, D. B.; Lesnoy, D. C.; Barlow, S. K.; Langer, R. Biodegradable polymer scaffolds for tissue engineering. Biotechnology 1994, 12, 689–693.

14

Hubbell, J. A. Biomaterials in tissue engineering. Biotechnology 1995, 13, 565–576.

15

Wahl, D. A.; Czernuszka, J. T. Collagen-hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006, 11, 43–56.

16

Wahl, D. A.; Sachlos, E.; Liu, C. Z.; Czernuszka, J. T. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. -Mater. Med. 2007, 18, 201–209.

17

Itoh, S.; Kikuchi, M.; Koyama, Y.; Takakuda, K.; Shinomiya, K.; Tanaka, J. Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite. Biomaterials 2002, 23, 3919–3926.

18

Kikuchi, M.; Itoh, S.; Ichinose, S.; Shinomiya, K.; Tanaka, J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 2001, 22, 1705–1711.

19

Yunoki, S.; Ikoma, T.; Monkawa, A.; Ohta, K.; Tanaka, J. J. Preparation and characterization of hydroxyapatite/collagen nanocomposite gel. Nanosci. Nanotechnol. 2007, 7, 818–821.

20

Price, R. L.; Waid, M. C.; Haberstroh, K. M.; Webster, T. J. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003, 24, 1877–1887.

21

Sato, M.; Webster, T. J. Nanobiotechnology: Implications for the future of nanotechnology in orthopedic applications. Expert Rev. Med. Devices 2004, 1, 105–114.

22

Elias, K. L.; Price, R. L.; Webster, T. J. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 2002, 23, 3279–3287.

23

Bianco, A.; Prato, M. Can carbon nanotubes be considered useful tools for biological applications? Adv. Mater. 2003, 15, 1765–1768.

24

Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1799.

25

Endo, M.; Hayashi, T.; Kim, Y. A.; Terrones, M.; Dresselhaus, M. S. Synthesis and application of carbon nanotubes. Chim. Oggi-Chem. Today 2005, 23, 16.

26

Terrones, M. Controlled production of aligned-nanotube bundles. Nature 1997, 388, 52–55.

27

Coleman, J. N.; Khan, U.; Blau, W. J.; Gun'ko, Y. K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652.

28

Pasquali, M. Swell properties and swift processing. Nat. Mater. 2004, 3, 509–510.

29

Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.

30

Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645.

31

Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Covalent surface chemistry of single-walled carbon nanotubes. Adv. Mater. 2005, 17, 17–29.

32

Georgakilas, V.; Tagmatarchis, N.; Pantarotto, D.; Bianco, A.; Briand, J. P.; Prato, M. Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 2002, 3050-3051.

33

Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes. Chem. -Eur. J. 2003, 9, 4001–4008.

34

Shim, M.; Kam, N. W. S.; Chen, R. J.; Li, Y. M.; Dai, H. J. Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett. 2002, 2, 285–288.

35

Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J. P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 2006, 1182-1184.

36

Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J. P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2007, 2, 108–113.

37

Zhao, B.; Hu, H.; Mandal, S. K.; Haddon, R. C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 2005, 17, 3235–3241.

38

Zanello, L. P.; Zhao, B.; Hu, H.; Haddon, R. C. Bone cell proliferation on carbon nanotubes. Nano Lett. 2006, 6, 562–567.

39

Usui, Y.; Aoki, K.; Narita, N.; Murakami, N.; Nakamura, I.; Nakamura, K.; Ishigaki, N.; Yamazaki, H.; Horiuchi, H.; Kato, H.; Taruta, S.; Kim, Y. A.; Endo, M.; Saito, N. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small 2008, 4, 240–246.

40

Myllyharju, J.; Kivirikko, K. I. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 2004, 20, 33–43.

41

Cao, Y.; Zhou, Y. M.; Shan, Y.; Ju, H. X.; Xue, X. J. Preparation and characterization of grafted collagen-multiwalled carbon nanotubes composites. J. Nanosci. Nanotechnol. 2007, 7, 447–451.

42

Crouzier, T.; Nimmagadda, A.; Nollert, M. U.; McFerridge, P. S. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions. Langmuir 2008, 24, 13173–13181.

43

MacDonald, R. A.; Laurenzi, B. F.; Viswanathan, G.; Ajayan, P. M.; Stegemann, J. P. Collagen-carbon nanotube composite materials as scaffolds in tissue engineering. J. Biomed. Mater. Res. A 2005, 74A, 489–496.

44

MacDonald, R. A.; Voge, C. M.; Kariolis, M.; Stegemann, J. P. Carbon nanotubes increase the electrical conductivity of fibroblast-seeded collagen hydrogels. Acta Biomat. 2008, 4, 1583–1592.

45

Voge, C. M.; Kariolis, M.; MacDonald, R. A.; Stegemann, J. P. Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alingment. J. Biomed. Mater. Res. A 2008, 86A, 269–277.

46

Bhattacharyya, S.; Salvetat, J. P.; Saboungi, M. L. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes. Appl. Phys. Lett. 2006, 88, 223119.

47

Trigueiro, J. P. C.; Silva, G. G.; Lavall, R. L.; Furtado, C. A.; Oliveira, S.; Ferlauto, A. S.; Lacerda, R. G.; Ladeira, L. O.; Liu, J. W.; Frost, R. L.; George, G. A. Purity evaluation of carbon nanotube materials by thermogravimetric, TEM, and SEM methods. J. Nanosci. Nanotechnol. 2007, 7, 3477–3486.

48

Veld, P. J.; Stevens, M. Simulation of the mechanical strength of a single collagen molecule. J. Biophys. J. 2008, 95, 33–39.

49

Sylvester, M. F.; Yannas, I. V.; Salzman, E. W.; Forbes, M. J. Collagen banded fibril structure and the collagen-platelet reaction. Thromb. Res. 1989, 55, 135–148.

50

Payne, K. J.; Veis, A. Fourier-transform IR spectroscopy of collagen and gelatin solutions-deconvolution of the amide I-band for conformational studies. Biopolymers 1988, 27, 1749–1760.

51

Huang, C. Y.; Mow, V. C.; Ateshian, G. A. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage. J. Biomechan. Eng. -Trans. 2001, 123, 410–417.

52

Fyhrie, D. P.; Barone, J. R. Polymer dynamics as a mechanistic model for the flow-independent viscoelasticity of cartilage. J. Biomechan. Eng. -Trans. 2003, 125, 578–584.

53

Kolosnjaj, J.; Szwarc, H.; Moussa, F. Toxicity studies of carbon nanotubes. Adv. Exp. Med. Biol. 2007, 620, 181–204.

54

Raja, P. M. V.; Connolley, J.; Ganesan, G. P.; Ci, L. J.; Ajayan, P. M.; Nalamasu, O.; Thompson, D. M. Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol. Lett. 2007, 169, 51–63.

55

Chou, C. C.; Hsiao, H. Y.; Hong, Q. S.; Chen, C. H.; Peng, Y. W.; Chen, H. W.; Yang, P. C. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008, 8, 437–445.

Nano Research
Pages 462-473
Cite this article:
da Silva EE, Della Colleta HHM, Ferlauto AS, et al. Nanostructured 3-D Collagen/Nanotube Biocomposites for Future Bone Regeneration Scaffolds. Nano Research, 2009, 2(6): 462-473. https://doi.org/10.1007/s12274-009-9042-7

832

Views

19

Downloads

52

Crossref

N/A

Web of Science

60

Scopus

0

CSCD

Altmetrics

Received: 04 November 2008
Revised: 20 March 2009
Accepted: 20 March 2009
Published: 01 June 2009
© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009
Return