Journal Home > Volume 2 , Issue 2

Single-crystalline orthorhombic antimony trioxide (Sb2O3) nanobelts with unique elliptical cross sections and purple-blue photoluminescence have been synthesized. The uniform Sb2O3 nanobelts are 400–600 nm in width, 20–40 nm in thickness at the center and gradually become thinner to form sharp edges sub-5 nm in size, tens of micrometers in length, and with [001] as the preferential growth direction. Self-assembly of tens of nanobelts into three-dimensional (3-D) flower-like nanostructures has been observed. Analysis was performed by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The Sb2O3 nanobelts display intense purple-blue photoluminescence centred at 425 nm (~2.92 eV). The successful synthesis of nanobelts with elliptical cross sections may cast new light on the investigation of the property differences between nanobelts with rectangular cross sections and those with other cross section geometries. The Sb2O3 nanobelts can be used as effective purple-blue light emitters and may also be valuable for future nanodevice design.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis and Purple-Blue Emission of Antimony Trioxide Single-Crystalline Nanobelts with Elliptical Cross Section

Show Author's information Zhengtao Deng1,2,3Dong Chen1Fangqiong Tang1( )Jun Ren1Anthony J. Muscat2
Laboratory of Controllable Preparation and Application of Nanomaterials Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijing 100080 China
Department of Chemical and Environmental Engineering The University of Arizona, TucsonArizona 85721 USA
College of Optical Science The University of Arizona, TucsonArizona 85721 USA

Abstract

Single-crystalline orthorhombic antimony trioxide (Sb2O3) nanobelts with unique elliptical cross sections and purple-blue photoluminescence have been synthesized. The uniform Sb2O3 nanobelts are 400–600 nm in width, 20–40 nm in thickness at the center and gradually become thinner to form sharp edges sub-5 nm in size, tens of micrometers in length, and with [001] as the preferential growth direction. Self-assembly of tens of nanobelts into three-dimensional (3-D) flower-like nanostructures has been observed. Analysis was performed by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy. The Sb2O3 nanobelts display intense purple-blue photoluminescence centred at 425 nm (~2.92 eV). The successful synthesis of nanobelts with elliptical cross sections may cast new light on the investigation of the property differences between nanobelts with rectangular cross sections and those with other cross section geometries. The Sb2O3 nanobelts can be used as effective purple-blue light emitters and may also be valuable for future nanodevice design.

Keywords: photoluminescence, nanobelts, Antimony trioxide, elliptical cross section, purple-blue

References(43)

1

Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949.

2

Shi, W.; Peng, H.; Wang, N.; Li, C. P.; Xu, L.; Lee, C. S.; Kalish, R.; Lee, S. T. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc. 2001, 123, 11095–11096.

3

Yu, Y.; Wang, R. H.; Chen, Q.; Peng, L. M. High-quality ultralong Sb2S3 nanoribbons on large scale. J. Phys. Chem. B 2005, 109, 23312–23315.

4

Hu, C. G.; Liu, H.; Dong, W. T.; Zhang, Y. Y.; Bao, G.; Lao, C. S.; Wang, Z. L. La(OH)3 and La2O3 nanobelts–Synthesis and physical properties. Adv. Mater. 2007, 19, 470–474.

5

Arnold, M. S.; Avouris, P.; Wang, Z. L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 2003, 107, 659–663.

6

Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

7

Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806–4808.

8

Hughes, W.; Wang, Z. L. Nanobelts as nanocantilevers. Appl. Phys. Lett. 2003, 82, 2886–2888.

9

Yan, H.; Johnson, J.; Law, M.; He, R.; Knutsen, K.; McKinney, J. R.; Pham, J.; Saykally, R.; Yang, P. ZnO nanoribbon microcavity lasers. Adv. Mater. 2003, 15, 1907–1911.

10

Xiong, Q. H.; Wang, J. G.; Reese, O.; Voon, L. C. L. Y.; Eklund, P. C. Raman scattering from surface phonons in rectangular cross-sectional w-ZnS nanowires. Nano Lett. 2004, 4, 1991–1996.

11

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q. Chemistry and physics of nanowires. Adv. Mater. 2003, 15, 353–389.

12

Gao, P.; Wang, Z. L. Self-Assembled nanowire–nanoribbon junction arrays of ZnO. J. Phys. Chem. B 2002, 106, 12653–12658.

13

Lao, J. Y.; Wen, G. J.; Ren, Z. F. Hierarchical ZnO nanostructures. Nano Lett. 2002, 2, 1287–1291.

14

Liu, B.; Zeng, H. C. Fabrication of ZnO "dandelions" via a modified Kirkendall process. J. Am. Chem. Soc. 2004, 126, 16744–16746.

15

Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. One-step solution-based catalytic route to fabricate novel α-MnO2 hierarchical structures on a large scale. Chem. Commun. 2005, 918–920.

16

Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X. M.; Li, F. Q. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J. Phys. Chem. B 2006, 110, 11704–11710.

17

Guo, L.; Wu, Z. H.; Liu, T.; Wang, W. D.; Zhu, H. S. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett. 2000, 318, 49–52.

18

Friedrichs, S.; Meyer, R. R.; Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Complete characterisation of a Sb2O3/(21, –8)SWNT inclusion composite. Chem. Commun. 2001, 929–930.

19

Ye, C. H.; Meng, G. W.; Zhang, L. D.; Wang, G. Z.; Wang, Y. H. A facile vapor–solid synthetic route to Sb2O3 fibrils and tubules. Chem. Phys. Lett. 2002, 363, 34–38.

20

Zhang, Y. X.; Li, G. H.; Zhang, J.; Zhang, L. D. Shape-controlled growth of one-dimensional Sb2O3 nanomaterials. Nanotechnology 2004, 15, 762–765.

21

Chen, X. Y.; Wang, X.; An, C. H.; Liu, J. W.; Qian, Y. T. Synthesis of Sb2O3 nanorods under hydrothermal conditions. Mater. Res. Bull. 2005, 40, 469–474.

22

Christian, P.; O'Brien, P. The preparation of antimony chalcogenide and oxide nanomaterials. J. Mater. Chem. 2005, 15, 4949–4954.

23

Sendor, D.; Weirich, T.; Simon, U. Transformation of nanoporous oxoselenoantimonates into Sb2O3-nanoribbons and nanorods. Chem. Commum. 2005, 5790–5792.

24

Deng, Z. T.; Tang F. Q.; Chen D.; Meng X. W.; Cao, L.; Zou. B. S. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections. J. Phys. Chem. B 2006, 110, 18225–18230.

25

Chand, N.; Verma, S. Surface and strength properties of PVC-Sb2O3 flame retardant coated sunhemp fiber. J. Fire Sci. 1991, 9, 251–258.

26

Sato, H.; Kondo, K.; Tsuge, S.; Ohtani, H.; Sato, N. Mechanisms of thermal degradation of a polyester flame-retarded with antimony oxide/brominated polycarbonate studied by temperature-programmed analytical pyrolysis. Polym. Degrad. Stab. 1998, 62, 41–48.

27

Liu, H. H.; Iwasawa, Y. Unique performance and characterization of a crystalline SbRe2O6 catalyst for selective ammoxidation of isobutane. J. Phys. Chem. B 2002, 106, 2319–2329.

28

Ha, Y.; Wang, M. Capillary melt method for micro antimony oxide pH electrode. Electroanalysis 2006, 18, 1121–1125.

29

Deng, Z. T.; Chen, D.; Tang, F. Q.; Meng, X. W.; Ren, J.; Zhang, L. Orientated attachment assisted self-assembly of Sb2O3 nanorods and nanowires: End-to-end versus side-by-side. J. Phys. Chem. C. 2007, 111, 5325–5330.

30

Deng, Z. T.; Peng, B.; Chen, D.; Tang, F. Q.; Muscat, A. J. A new route to self-assembled tin dioxide nanospheres: Fabrication and characterization. Langmuir; 2008, 24, 11089–11095.

31

Deng, Z. T.; Chen, D.; Peng, B.; Tang, F. Q. From bulk metal Bi to two-dimensional well-crystallized BiOX (X=Cl, Br) micro- and nanostructures: Synthesis and characterization. Cryst. Growth Des. 2008, 8, 2995–3003.

32

Deng, Z. T.; Tang, F. Q.; Muscat, A. J. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology 2008, 19, 295705.

33

Wagner, C. D. Sensitivity factors for XPS analysis of surface atoms. J. Electron Spectrosc. Relat. Phenom. 1983, 32, 99–102.

34

Moulder, J.; Stickie, W.; Sobal, P.; Bomber, K. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer: Eden Prairie, MN, 1992.

35

Liu, K. S.; Zhai, J.; Jiang, L. Fabrication and characterization of superhydrophobic Sb2O3 films. Nanotechnology, 2008, 19, 165604.

36

Cody, C. A.; DiCarlo, L.; Darlington, R. K. Vibrational and thermal study of antimony oxides. Inorg. Chem. 1979, 18, 1572–1576.

37

Mestl, G.; Ruiz, P.; Delmon, B.; Knozinger, H. Sb2O3/Sb2O4 in reducing/oxidizing environments: An in situ Raman spectroscopy study. J. Phys. Chem. 1994, 11276–11282.

38

Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125, 4430–4431.

39

Mayers, B.; Gates, B.; Yin, Y. D.; Xia, Y. N. Large-scale synthesis of monodispersed nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv. Mater. 2001, 13, 1380–1384.

DOI
40

Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv. Mater. 2003, 15, 936–940.

41

Che, R, C.; Peng, L. M.; Zhou, W. Z. Synthesis and characterization of crystalline microporous cobalt phosphite nanowires. Appl. Phys. Lett. 2005, 87, 173122.

42

Hsu, J. W. P.; Tallant, D. R.; Simpson, R. L.; Missert, N. A.; Copel, R. G. Luminescent properties of solution-grown ZnO nanorods. Appl. Phys. Lett. 2006, 88, 252103.

43

Her, Y. C.; Wu, J. Y.; Lin, Y. R.; Tsai, S. Y. Low-temperature growth and blue luminescence of SnO2 nanoblades. Appl. Phys. Lett. 2006, 89, 043115.

File
nr-2-2-151_ESM.pdf (394.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 October 2008
Revised: 15 December 2008
Accepted: 15 December 2008
Published: 01 February 2009
Issue date: February 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We are grateful to Fee Li Lie at the University of Arizona for help with the XPS characterization and for financial support from the National Natural Science Foundation of China (Nos. 60736001, 60572031, and 20571080) and Science Foundation Arizona (Strategic Research Group Program).

Rights and permissions

This article is published with open access at Springerlink.com

Return