Journal Home > Volume 2 , Issue 2

A new technique to reduce the influence of metallic carbon nanotubes (CNTs)—relevant for large-scale integrated circuits based on CNT-nanonet transistors—is proposed and verified. Historically, electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors; however, the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory. Here, we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called "striping"; this allows fabrication of transistors with ON/OFF ratio > 1000 and ON-current degradation no more than a factor of 2. We offer first principle numerical models, experimental confirmation, and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.


menu
Abstract
Full text
Outline
About this article

Theory and Practice of "Striping" for Improved ON/OFF Ratio in Carbon Nanonet Thin Film Transistors

Show Author's information Ninad Pimparkar1Qing Cao2John A. Rogers2,3,4,5,6( )Muhammad A. Alam1( )
School of Electrical and Computer EngineeringPurdue UniversityWest Lafayette, Indiana47907-1285USA
Department of ChemistryUniversity of IllinoisUrbana, IL61801USA
Materials and Science EngineeringUniversity of IllinoisUrbana, IL61801USA
Electrical and Computer EngineeringUniversity of IllinoisUrbana, IL61801USA
Beckman InstituteUniversity of IllinoisUrbana, IL61801USA
Frederick and Seitz Materials Res. LabUniversity of IllinoisUrbana, IL61801USA

Abstract

A new technique to reduce the influence of metallic carbon nanotubes (CNTs)—relevant for large-scale integrated circuits based on CNT-nanonet transistors—is proposed and verified. Historically, electrical and chemical filtering of the metallic CNTs have been used to improve the ON/OFF ratio of CNT-nanonet transistors; however, the corresponding degradation in ON-current has made these techniques somewhat unsatisfactory. Here, we abandon the classical approaches in favor of a new approach based on relocation of asymmetric percolation threshold of CNT-nanonet transistors by a technique called "striping"; this allows fabrication of transistors with ON/OFF ratio > 1000 and ON-current degradation no more than a factor of 2. We offer first principle numerical models, experimental confirmation, and renormalization arguments to provide a broad theoretical and experimental foundation of the proposed method.

Keywords: Carbon nanotube, flexible electronics, thin film transistors, Nanonet

References(25)

1

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature2008, 454, 495–500.

2

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature2003, 425, 274–278.

3

Novak, J. P.; Lay, M. D.; Perkins, F. K.; Snow, E. S. Macroelectronic applications of carbon nanotube networks. Solid State Electron. 2004, 48, 1753–1756.

4

Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. A. Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 2003, 83, 4026–4028.

5

Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett.2003, 82, 2145–2147.

6

Szleifer, I.; Yerushalmi-Rozen, R. Polymers and carbon nanotubes—Dimensionality, interactions and nanotechnology. Polymer2005, 46, 7803–7808.

7

Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p–n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.

8

Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95/6, 066802.

9

Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of sub-percolating nanobundle network transistors by an analytical model. IEDM Tech. Digest2005, 21, 541–544.

10

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

11

Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y.; Wang, C.J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304.

12

Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science2001, 292, 706–709.

13

Kumar, S.; Blanchet, G. B.; Hybertsen, M. S.; Murthy, J. Y.; Alam, M. A. Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 2006, 89, 143501.

14

Datta S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: Cambridge, 2005.

DOI
15

Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor and Francis: London, 1992.

16

Haddon, R. C.; Sippel, J.; Rinzler, A. G.; Papadimitrakopoulos, F. Purification and separation of carbon nanotubes. MRS Bull. 2004, 29, 252–259.

17

Wang, C.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

18

Arnold, M. S.; Stupp, S. I.; Hersam, M. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

19

Seidel, R.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Steinhoegl, W.; Kreupl, F.; Hoenlein, W. High-current nanotube transistors. Nano Lett. 2004, 4, 831–834.

20

Pimparkar, N.; Guo, J.; Alam, M. A. Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE T. Electron Dev. 2007, 54, 637–644.

21

Li, Y. M.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D. W.; Yenilmez, E.; Wang, Q.; Gibbons, J. F.; Nishi, Y.; Dai, H. J. Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method. Nano Lett. 2004, 4, 317–321.

22

Pimparkar, N.; Kumar, S.; Cao, Q.; Rogers, J. A.; Murthy, J. Y.; Alam, M. A. Current-voltage characteristics of long-channel nanobundle thin-film transistors: A "bottom-up" perspective. IEEE Electron Dev. L. 2007, 28, 157–160

23

Pimparkar N.; Kocabas C.; Kang S. J.; Rogers J. A.; Alam M. A. Electron Dev. Lett.2007, 28, 593–595.

DOI
24

Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

25

Seager, C. H.; Pike, G. E. Percolation and conductivity: A computer study. Phys. Rev. B1974, 10, 1421.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 September 2008
Revised: 10 December 2008
Accepted: 11 December 2008
Published: 01 February 2009
Issue date: February 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

N. Pimpartat. and M. A. Alam would like to thank S. Kumar and J. Murthy for help with generating random networks and the Network for Computational Nanotechnology and the Lilly Foundation for financial support. Q. Cao. and J. R. Rogers would like to thank T. Banks for help with processing. We thank the National Science Foundation (NIRT-0403489), the Department of Energy (DE-FG02-07ER46471), Motorola, Inc., the Frederick-Seitz Materials Research Laboratory, and the Center for Microanalysis of Materials (DE-FG02-07ER46453 and DE-FG02-07ER46471) at the University of Illinois.

Rights and permissions

This article is published with open access at Springerlink.com

Return