Journal Home > Volume 2 , Issue 2

We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.


menu
Abstract
Full text
Outline
About this article

Improved Peptidyl Linkers for Self-Assembly of Semiconductor Quantum Dot Bioconjugates

Show Author's information Lorenzo Berti1,2Paola Serena D'Agostino1Kelly Boeneman3Igor L. Medintz3( )
CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces (S3)Via Campi 213/A 41100 Modena Italy
University of California Davis Medical CenterSacramento CA 95817 USA
Center for Bio/Molecular Science and Engineering Code 6900 U.S. Naval Research LaboratoryWas hington DC 20375 USA

Abstract

We demonstrate improved peptide linkers which allow both conjugation to biomolecules such as DNA and self-assembly with luminescent semiconductor quantum dots. A hexahistidine peptidyl sequence was generated by standard solid phase peptide synthesis and modified with the succinimidyl ester of iodoacetamide to yield a thiol-reactive iodoacetyl polyhistidine linker. The reactive peptide was conjugated to dye-labeled thiolated DNA which was utilized as a model target biomolecule. Agarose gel electrophoresis and fluorescence resonance energy transfer analysis confirmed that the linker allowed the DNA to self-assemble with quantum dots via metal-affinity driven coordination. In contrast to previous peptidyl linkers that were based on disulfide exchange and were thus labile to reduction, the reactive haloacetyl chemistry demonstrated here results in a more stable thioether bond linking the DNA to the peptide which can withstand strongly reducing environments such as the intracellular cytoplasm. As thiol groups occur naturally in proteins, can be engineered into cloned proteins, inserted into nascent peptides or added to DNA during synthesis, the chemistry demonstrated here can provide a simple method for self-assembling a variety of stable quantum dot bioconjugates.

Keywords: nanocrystal, fluorescence, bioconjugation, DNA, peptide, Semiconductor quantum dot, iodoacetyl, sulfhydryl, polyhistidine, metal-affinity, fluorescence resonance energy transfer (FRET)

References(32)

1

Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

2

Medintz, I.; Uyeda, H.; Goldman, E.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

3

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

4

Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.

5

Clapp, A. R.; Medintz, I. L.; Mattoussi, H. Forster resonance energy transfer investigations using quantum-dot fluorophores. ChemPhysChem 2005, 7, 47–57.

6

Sapsford, K. E.; Pons, T.; Medintz, I. L.; Mattoussi, H. Biosensing with luminescent semiconductor quantum dots. Sensors 2006, 6, 925–953.

7

Sapsford, K. E.; Bradburne, C.; Detehanty, J. B.; Medintz, I. L. Sensors for detecting biological agents. Mater. Today 2008, 11, 38–49.

8

Sapsford, K. E.; Berti, L.; Medintz, I. L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. 2006, 45, 4562–4588.

9

Medintz, I. Universal tools for biomolecular attachment to surfaces. Nat. Mater. 2006, 5, 842.

10

Sapsford, K. E.; Pons, T.; Medintz, I. L.; Higashiya, S.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe–ZnS quantum dots. J. Phys. Chem. C 2007, 111, 11528–11538.

11

Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; Goldman, E. R.; Fisher, B.; Mauro, J. M. Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nat. Mater. 2003, 2, 630–638.

12

Delehanty, J. B.; Medintz, I. L.; Pons, T.; Brunel, F. M.; Dawson, P. E.; Mattoussi, H. Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconj. Chem. 2006, 17, 920–927.

13

Medintz, I. L.; Clapp, A. R.; Brunel, F. M.; Tiefenbrunn, T.; Uyeda, H. T.; Chang, E. L.; Deschamps, J. R.; Dawson, P. E.; Mattoussi, H. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nat. Mater. 2006, 5, 581–589.

14

Goldman, E.; Medintz, I.; Whitley, J.; Hayhurst, A.; Clapp, A.; Uyeda, H.; Deschamps, J.; Lassman, M.; Mattoussi, H. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor. J. Am. Chem. Soc. 2005, 127, 6744–6751.

15

Ipe, B. I.; Niemeyer, C. M. Nanohybrids composed of quantum dots and cytochrome P450 as photocatalysts, Angew. Chem. Int. Ed. 2006, 45, 504–507.

16

Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G. Compact biocompatible quantum dots functionalized for cellular imaging. J. Am. Chem. Soc. 2008, 130, 1274–1284.

17

Medintz, I. L.; Berti, L.; Pons, T.; Grimes, A. F.; English, D. S.; Alessandrini, A.; Facci, P.; H., M. A reactive peptidic linker for self-assembling hybrid quantum dot-DNA bioconjugates. Nano Lett. 2007, 7, 1741–1748.

18

Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 2000, 122, 12142–12150.

19

Hermanson, G. T. Bioconjugate Techniques; Academic Press: San Diego, 2008.

20

Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer: New York, 2006.

21

Pons, T.; Medintz, I. L.; Wang, X.; English, D. S.; Mattoussi, H. Solution-phase single quantum dot fluorescence resonance energy transfer. J. Am. Chem. Soc. 2006, 128, 15324–15331.

22

Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J. Am. Chem. Soc. 2004, 126, 301–310.

23

Pons, T.; Uyeda, H. T.; Medintz, I. L.; Mattoussi, H. Hydrodynamic dimensions, electrophoretic mobility, and stability of hydrophilic quantum dots. J. Phys. Chem. B. 2006, 110, 20308–20316.

24

Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997, 101, 9463–9475.

25

Uyeda, H. T.; Medintz, I. L.; Jaiswal, J. K.; Simon, S. M.; Mattoussi, H. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. J. Am. Chem. Soc. 2005, 127, 3870–3878.

26

Susumu, K.; Uyeda, H. T.; Medintz, I. L.; Pons, T.; Delehanty, J. B.; Mattoussi, H. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996.

27

Venkatesan, N.; Kim, B. H. Peptide conjugates of oligonucleotides: Synthesis and applications. Chem. Rev. 2006, 106, 3712–3761.

28

Nitin, N.; Santangelo, P. J.; Kim, G.; Nie, S. M.; Bao, G. Dual FRET molecular beacons for mRNA detection in living cells. Nucl. Acids Res. 2004, 32, e57.

29

Haugland, R. P. The Handbook: A Guide to Fluorescent Probes and Labeling Technologies; Invitrogen: San Diego, 2005.

30

Sarikaya, M.; Tamerler, C.; Schwartz, D. T.; Baneyx, F. O. Materials assembly and formation using engineered polypeptides. Ann. Rev. Mat. Res. 2004, 34, 373–408.

31

Dennis, A. M.; Bao, G. Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy transfer probes. Nano Lett. 2008, 8, 1439–1445.

32

Yao, H.; Zhang, Y.; Xiao, F.; Xia, Z.; Rao, J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 2007, 46, 4346–4349.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 October 2008
Revised: 02 December 2008
Accepted: 02 December 2008
Published: 01 February 2009
Issue date: February 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors acknowledge Stephen Lee and Ilya Elashvilli of the CB Directorate/Physical S & T Division (DTRA), ONR, NRL, and the NRL-NSI for financial support. K.B. acknowledges an ASEE fellowship through NRL. The authors also gratefully acknowledge Dr. Hedi Mattoussi, NRL, for providing the luminescent quantum dots utilized in this study.

Rights and permissions

This article is published with open access at Springerlink.com

Return