Journal Home > Volume 1 , Issue 5

Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. Although these systems share a similar underlying electronic structure, whose exact details depend on confinement effects, crucial differences emerge when disorder comes into play. In this review, we consider the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. After summarizing the electronic and transport properties of defect-free systems, we focus on the effects of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.


menu
Abstract
Full text
Outline
About this article

Charge Transport in Disordered Graphene-Based Low Dimensional Materials

Show Author's information Alessandro Cresti1,2Norbert Nemec3Blanca Biel1,2Gabriel Niebler4,5François Triozon1Gianaurelio Cuniberti4Stephan Roche2( )
CEALETI, MINATECF38054Grenoble, France
CEAInstitute for Nanoscience and CryogenicsINAC/SPSMS/GT, 17 rue des Martyrs38054Grenoble Cedex 9, France
Theory of Condensed Matter GroupCavendish Laboratory, University of Cambridge, Trinity Lane, CambridgeCB2 17NUK
Institute for Materials ScienceTU DresdenD-01062Germany
Department of Condensed Matter PhysicsFaculty of Mathematics and PhysicsCharles University, Ke Karlovu 5121 16Prague 2, Czech Rep

Abstract

Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. Although these systems share a similar underlying electronic structure, whose exact details depend on confinement effects, crucial differences emerge when disorder comes into play. In this review, we consider the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. After summarizing the electronic and transport properties of defect-free systems, we focus on the effects of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.

Keywords: Graphene, charge transport, carbon nanotubesIntroduction

References(166)

1

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

DOI
2

Loiseau, A.; Launois, P.; Petit, P., Roche, S.; Salvetat, J. -P. Understanding Carbon Nanotubes from Basics to Applications; Lecture Notes in Physics, Vol. 677; Springer-Verlag: Berlin, Heidelberg, 2006.

DOI
3

Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications; Springer-Verlag: Berlin, Heidelberg, 2007.

DOI
4

Charlier, J. C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677–732.

5

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Filrsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

6

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

7

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

8

Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y. -W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 2006, 96, 136806.

9

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

10

Öezyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Kim, P. Electronic transport in locally gated graphene nanoconstrictions. Appl. Phys. Lett. 2007, 91, 192107.

11

Öezyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov, L. S.; Kim, P. Electronic transport and quantum Hall effect in bipolar graphene p–n–p junctions. Phys. Rev. Lett. 2007, 99, 166804.

12

Jiang, Z; Zhang, Y; Stormer, H. L.; Kim, P. Quantum Hall states near the charge-neutral Dirac point in graphene. Phys. Rev. Lett. 2007, 99, 106802.

13

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.

14

Wu, X.; Li, X.; Song, Z.; Berger, C.; de Heer, W. A. Weak antilocalization in epitaxial graphene: Evidence for chiral electrons. Phys. Rev. Lett. 2007, 98, 136801.

15
Castro Neto, A. H; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. arXiv: 0709.1163v2.
16
Dayen, J. -F.; Mahmood, A.; Golubev, D. S.; Roch-Jeune, I.; Salles, P.; Dujardin, E. Side-gated transport in FIB-fabricated multilayered graphene nanoribbons. arXiv: 0712.2314v2, 2008.https://doi.org/10.1002/smll.200700913
DOI
17

Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A graphene field-effect device. IEEE Elect. Dev. L. 2007, 28, 282–284.

18

Han, M. Y.; Öezyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

19

Chen, Z.; Lin, Y. -M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.

20

Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H. Graphene field-effect devices. Eur. Phys. J. Special Topics 2007, 148, 19–26.

21

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer Phys. Rev. Lett. 2008, 100, 016602.

22

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

23

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

24

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

25

Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505.

26

McClure, J. W. Diamagnetism of graphite. Phys. Rev. 1956, 104, 666–671.

27

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954.

28

Wakabayashi, K.; Fujita, M; Ajiki, H.; Sigrist, M. Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B 1999, 59, 8271–8282.

29

Wakabayashi, K. Theory of ballistic electron emission microscopy. Phys. Rev. B 2001, 64, 125408.

30

Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 2006, 73, 045432.

31

Peres, N. M. R; Castro Neto, A. H.; Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 2006, 73, 195411.

32

Brey, L.; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.

33

Muñoz-Rojas F.; Jacob, D.; Fernádez-Rossier, J.; Palacios, J. J. Coherent transport in graphene nanoconstrictions. Phys. Rev. B 2006, 74, 195417.

34

Wang, Z. F.; Li, Q.; Zheng, H.; Ren, H.; Su, H.; Shi, Q. W.; Chen, J. Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study. Phys. Rev. B 2007, 75, 113406.

35

Zheng, H.; Wang, Z. F.; T. Luo, T.; Shi, Q. W.; Chen, J. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B 2007, 75, 165414.

36

Areshkin, D. A.; Gunlycke, D.; White, C. T. Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett. 2007, 7, 204–210.

37

Gunlycke, D.; Areshkin, D. A.; White, C. T. Semi-conducting graphene nanostrips with edge disorder. Appl. Phys. Lett. 2007, 90, 142104.

38

Gunlycke, D.; Lawler, H. M.; White, C. T. Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 2007, 75, 085418.

39

Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.

40

Fabrizio, M.; Parola, A.; Tosatti, E. Strong-coupling phases of two Hubbard chains with interchain hopping. Phys. Rev. B 1992, 46, 3159–3162.

41

Gopalan, S.; Rice, T. M.; Sigrist, M. Spin ladders with spin gaps: A description of a class of cuprates. Phys. Rev. B 1994, 49, 8901–8910.

42

Choi, H. J.; Ihm, J.; Louie, S. G.; Cohen, M. L. Defects, quasibound states, and quantum conductance in metallic carbon nanotubes. Phys. Rev. Lett. 2000, 84, 2917–2920.

43

Kim, G.; Lee, S. B.; Kim, T. -S.; Ihm, J. Fano resonance and orbital filtering in multiply connected carbon nanotubes. Phys. Rev. B 2005, 71, 205415.

44

Kim, G.; Jeong, B. W.; Ihm, J. Deep levels in the band gap of the carbon nanotube with vacancy-related defects Appl. Phys. Lett. 2006, 88, 193107.

45

Zhou, T.; Wu, J.; Duan, W.; Gu, B. -L. Physical mechanism of transport blocking in metallic zigzag carbon nanotubes. Phys. Rev. B 2007, 75, 205410.

46

Sánchez-Portal, D.; Ordejón, P.; Artacho, E.; Soler, J. M. Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 1997, 65, 453–461.

DOI
47

Malysheva, L.; Onipko, A. Spectrum of π electrons in graphene as a macromolecule. Phys. Rev. Lett. 2008, 100, 186806.

48

Cresti, A.; Grosso G.; Pastori Parravicini, G. Electronic states and magnetotransport in unipolar and bipolar graphene ribbons. Phys. Rev. B 2008, 77, 115408.

49

Sutton, A.P. Electronic Structure of Materials; Clarendon Press: Oxford, 1994, p. 41.

50

Rycerz, A.; Tworzydlo, J.; Beenaker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.

51

Akhmerov, A. R.; Bardarson, J. H.; Rycerz, A.; Beenaker, C. W. J. Theory of the valley-valve effect in graphene nanoribbons. Phys. Rev. B 2008, 77, 205416.

52

Li, Z.; Qian, H.; Wu, J.; Gu, B. -L.; Duan, W. Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys. Rev. Lett. 2008, 100, 206802.

53

Cresti, A.; Grosso, G.; Pastori Parravicini, G. Valley-valve effect and even-odd chain parity in p–n graphene junctions. Phys. Rev. B 2008, 77, 233402.

54

Cresti, A; Grosso, G.; Pastori Parravicini, G. Fieldeffect resistance of gated graphitic polymeric ribbons: Numerical simulations. Phys. Rev. B 2008, 78, 115433.

55

Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 1999, 59, 9858–9861.

56

Kawai, T.; Miyamoto, Y.; Sugino, O.; Koga, Y. Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. Rev. B 2000, 62, R16349.

57

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

58

Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons Nano Lett. 2006, 6, 2748–2754.

59

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

60

White, C. T.; Li, J.; Gunlycke, D.; Mintmire, J. W. Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett. 2007, 7, 825–830.

61

Fujita, M.; Igami, M.; Nakada, K. Lattice distortion in nanographite ribbons. J. Soc. Phys. Jpn. 1997, 66, 1864–1867.

62

Sasaki, K.; Murakami, S.; Saito, R. Stabilization mechanism of edge states in graphene. Appl. Phys. Lett. 2006, 88, 113110.

63

Gunlycke, D.; White, C. T. Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys. Rev. B 2008, 77, 115116.

64

Klusek, Z.; Waqar, Z.; Denisov, E. A.; Kompaniets, T. N.; Makarenko, I. W.; Titkov, A. N.; Bhatti, A. S. Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunneling spectroscopy. Appl. Surf. Sci. 2000, 161, 508–514.

65

Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy studies of graphite edges. Appl. Surf. Sci. 2005, 241, 43–48.

66

Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.

67

Wallace, P. R. The band theory of graphite. Phys. Rev. 1947, 71, 622–634.

68

Reich, S.; Maultzsch, J.; Thomsen, C.; Ordejón P. Tight-binding description of graphene. Phys. Rev. B 2002, 66, 035412.

69
Grüneis, A.; Attaccalite, C.; Wirtz, L.; Shiozawa, H.; Saito, R.; Pichler, T.; Rubio, A. arXiv: 0808.1467v2, 2008.
70

Fiori, G.; Iannaccone, G. Simulation of graphene nanoribbon field-effect transistors. IEEE Elect. Dev. L. 2007, 28, 760–762.

71
Sun, L.; Li, Q.; Ren, H.; Shi, Q. W.; Yang, J.; Hou, J. G. Strain effect on energy gaps of armchair graphene nanoribbons. arXiv: cond-mat/0703795, 2007.
72

Gunlycke, D.; Areshkin, D. A.; Li, J.; Mintmire, J. W.; White, C. T. Graphene nanostrip digital memory device. Nano Lett. 2007, 7, 3608–3611.

73

Palacios, J. J.; Fernández-Rossier, J.; Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 2008, 77, 195428.

74

Fernández-Rossier, J. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B 2008, 77, 075430.

75

Nemec, N.; Tománek, D.; Cuniberti, G. Contact dependence of carrier injection in carbon nanotubes: An ab initio study. Phys. Rev. Lett. 2006, 96, 076802.

76

Nemec, N.; Tománek, D.; Cuniberti, G. Modeling extended contacts for nanotube and graphene devices. Phys. Rev. B 2008, 77, 125420.

77

Tworzydlo, J.; Trauzettel, B.; Titov, M.; Rycerz, A.; Beenakker, C. W. J. Sub-Poissonian shot noise in graphene. Phys. Rev. Lett. 2006, 96, 246802.

78

Kastnelson, M. I. Zitterbewegung, chirality, and minimal conductivity in graphene. Eur. Phys. J. B 2006, 51, 157–160.

79

Cresti, A.; Grosso, G.; Pastori Parravicini, G. Numerical study of electronic transport in gated graphene ribbons. Phys. Rev. B 2007, 76, 205433.

80

Schomerus, H. Effective contact model for transport through weakly-doped graphene. Phys. Rev. B 2007, 76, 045433.

81

San-Jose, P.; Prada, E.; Golubev, D. S. Universal scaling of current fluctuations in disordered graphene. Phys. Rev. B 2007, 76, 195445.

82

Lewenkopf, C. H.; Mucciolo, E. R.; Castro Neto, A. H. Numerical studies of conductivity and Fano factor in disordered graphene. Phys. Rev. B 2008, 77, 081410.

83

Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U. C.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.

84

DiCarlo, L.; Williams, J. R.; Zhang, Y.; McClure, D. T.; Marcus, C. M. Shot noise in graphene. Phys. Rev. Lett. 2008, 100, 156801.

85

Danneau, R.; Wu, F.; Craciun, M. F.; Russo, S.; Tomi, M. Y.; Salmilehto, J.; Morpurgo A. F.; Hakonen, P. J. Shot noise in ballistic graphene. Phys. Rev. Lett. 2008, 100, 196802.

86

Nemec, N; Cuniberti, G. Hofstadter butterflies of bilayer graphene. Phys. Rev. B 2007, 75, 201404.

87

Nemec, N; Cuniberti, G. Hofstadter butterflies of carbon nanotubes: Pseudofractality of the magnetoelectronic spectrum. Phys. Rev. B 2006, 74, 165411.

88

Brey, L.; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.

89

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

90

Gusynin, V. P.; Sharapov, S. G. Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 146801.

91

Cresti, A. Proposal for a graphene-based current nanoswitch. Nanotechnology 2008, 19, 265401.

92

Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. App. Phys. Lett. 2007, 91, 163513.

93

Ando, T.; Nakanishi, T.; Saito, R. Berry's phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 1998, 67, 2857–2862.

94

White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240–242.

95

McCann, E.; Kechedzhi, K.; Fal'ko, V. I.; Suzuura, H.; Ando, T.; Altshuler, B. L. Weak-localization magnetoresistance and valley symmetry in graphene. Phys. Rev. Lett. 2006, 97, 146805.

96

Ostrovsky, P. M.; Gornyi, I. V.; Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 2006, 74, 235443.

97

Morpurgo A. F.; Guinea, F. Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene. Phys. Rev. Lett. 2006, 97, 196804.

98

Khveshchenko, D. V. Effects of long-range correlated disorder on Dirac fermions in graphene. Phys. Rev. B 2007, 75, 241406.

99

Suzuura, H.; Ando, T. Weak-localization in metallic carbon nanotubes. J. Phys. Soc. Jpn. 2006, 75, 024703.

100

Aleiner, I. L.; Efetov, K. B. Effect of disorder on transport in graphene. Phys. Rev. Lett. 2006, 97, 236801.

101

Nomura, K.; Koshino, M.; Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. Phys. Rev. Lett. 2007, 99, 146806.

102

Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 1961, 124, 41–52.

103

Abrahams, E.; Anderson, P. W.; Licciardello, D. C.; Ramakrishnan T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 1979, 42, 673–676

104

Lee, P. A.; Fisher, D. S. Anderson localization in two dimensions. Phys. Rev. Lett. 1981, 47, 882–885.

105

Lee, P. A.; Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337.

106

Roche, S.; Saito, R. Magnetoresistance of carbon nanotubes: From molecular to mesoscopic fingerprints. Phys. Rev. Lett. 2001, 87, 246803.

107

Fedorov, G.; Lassagne, B.; Sagnes, M.; Raquet, B.; Broto, J. -M.; Triozon, F.; Roche, S.; Flahaut, E. Gate-dependent magnetoresistance phenomena in carbon nanotubes. Phys. Rev. Lett. 2005, 94, 066801.

108

Gomez-Navarro, C.; Pablo, P. J. De; Gómez-Herrero, J.; Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 2005, 4, 534–539.

109

Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Anderson localization in carbon nanotubes: Defect density and temperature effects. Phys. Rev. Lett. 2005, 95, 266801.

110

Strunk, C.; Stojetz, B.; Roche, S. Quantum interference in multiwall carbon nanotubes. Semicond. Sci. Technol. 2006, 21, S38–S45.

111

Fedorov, G.; Tselev, A.; Jimenez, D.; Latil, S.; Kalugin, N.; Barbara, P.; Roche, S. Magnetically induced field effect in carbon nanotube devices. Nano Lett. 2007, 7, 960–964.

112

Lassagne, B.; Cleuziou, J. -P., Nanot, S.; Escofier, W.; Avriller, R.; Roche, S.; Forro, L.; Raquet, B.; Broto, J. -M. Aharonov-Bohm conductance modulation in ballistic carbon nanotubes. Phys. Rev. Lett. 2007, 98, 176802.

113

Stojetz, B.; Roche, S.; Miko, C.; Triozon, F.; Forro, L.; Strunk, C. Competition between magnetic field dependent band structure and coherent backscattering in multiwall carbon nanotubes. New J. Phys. 2007, 9, 56.

114

Biel, B.; Garcia-Vidal, F. J.; Rubio, A.; Flores, F. Ab initio study of transport properties in defected carbon nanotubes: An O(N) approach. J. Phys. : Condens. Matter 2008, 20, 294214.

115

Flores, F.; Biel, B.; Rubio, A.; Garcia-Vidal, F. J.; Gomez-Navarro, C.; de Pablo, P. J.; Gomez-Herrero, J. Anderson localization regime in carbon nanotubes: Size dependent properties. J. Phys. : Condens. Matter 2008, 20, 304211.

116

Hügle, S.; Egger, R. van Hove singularities in disordered multichannel quantum wires and nanotubes. Phys. Rev. B 2002, 66, 193311.

117

Nemec, N., Richter, K.; Cuniberti, G. Diffusion and localization in carbon nanotubes and graphene nanoribbons. New J. Phys. 2008, 10, 065014.

118

Abrikosov, A.; Gor'kov, L. P.; Dzyaloshiuskii, I. E. Quantum Field Theoretical Methods in Statistical Physics; Pergamon: Oxford, 1965.

119

López Sancho, M. P.; López Sancho, J. M.; Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 1985, 15, 851–858.

120
Nemec, N. Quantum transport in carbon-based nanostructures. PhD Thesis, Universität Regensburg, 2007.
121

Lherbier, A.; Persson, M.; Niquet, Y. M.; Triozon, F.; Roche, S. Quantum transport length scales in silicon-based semiconducting nanowires: Surface roughness effects. Phys. Rev. B. 2008, 77, 085301.

122

Triozon, F.; Roche, S.; Rubio, A.; Mayou, D. Electrical transport in carbon nanotubes: Role of disorder and helical symmetries. Phys. Rev. B 2004, 69, 121410.

123

Tikhonenko, F. V.; Horsell, D. W.; Gorbachev, R. V.; Savchenko, A. K. Weak localization in graphene flakes. Phys. Rev. Lett. 2008, 100, 056802.

124

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 2006, 97, 016801.

125

Datta, S. Electronic Transport in Mesoscopic Systems; Cambridge University Press: New York, NY, 1995.

DOI
126

Thouless, D. J. Maximum metallic resistance in thin wires. Phys. Rev. Lett. 1977, 39, 1167–1169.

127

Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 1997, 69, 731–808.

128

Avriller, R.; Latil, S.; Triozon, F.; Blase, X.; Roche, S. Chemical disorder strength in carbon nanotubes: xMagnetic tuning of quantum transport regimes. Phys. Rev. B 2006, 74, 121406.

129

Niimi, Y.; Matsui, T.; Kambara, H.; Tagami, K.; Tsukada, M.; Fukuyama, H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B. 2006, 73, 085421.

130

Enoki, T.; Kobayashi, Y.; Katsuyama, C.; Osipov, V. Y.; Baidakova, M. V.; Takai, K.; Fukui, K.; Vul', A. Y. Structures and electronic properties of surface/edges of nanodiamond and nanographite. Diamond Relat. Mater. 2007, 16, 2029–2034.

131

Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 2006, 73, 125415.

132

Enoki, T.; Kobayashi, Y.; Fukui, K. I. Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 2007, 26, 609–645.

133

Banerjee, S.; Sardar, M.; Gayathri, N.; Tyagi, A. K.; Raj, B. Conductivity landscape of highly oriented pyrolytic graphite surfaces containing ribbons and edges. Phys. Rev. B 2005, 72, 075418.

134

Banerjee, S.; Sardar, M.; Gayathri, N.; Tyagi, A. K.; Raj, B. Enhanced conductivity in graphene layers and at their edges. Appl. Phys. Lett. 2006, 88, 602111.

135

Cançado, L. G.; Pimenta, M. A.; Neves, B. R.; Dantas, M. S.; Jorio, A. Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 2004, 93, 247401.

136

de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.

137

Wang, X.; Ouyang, Y.; Li, X.; Wang, H.; Guo, J.; Dai, H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

138

Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech. 2008, 3, 397–401.

139

Querlioz, D.; Apertet, Y.; Valentin, A.; Huet, K.; Bournel, A.; Galdin-Retailleau, S.; Dollfus, P. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Appl. Phys. Lett. 2008, 92, 042108.

140
Evaldsson, M.; Zozoulenko, I. V.; Xu, H.; Heinzel, T. Edge disorder induced Anderson localization and conduction gap in graphene nanoribbons. arXiv: 0805.4326v1, 2008.https://doi.org/10.1103/PhysRevB.78.161407
DOI
141
Mucciolo, E. R.; Castro Neto, A. H.; Lewenkopf, C. H. Conductance quantization and transport gap in disordered graphene nanoribbons. arXiv: 0806.3777, 2008.https://doi.org/10.1103/PhysRevB.79.075407
DOI
142
Martin, I.; Blanter, Y. M. Transport in disordered graphene nanoribbons. arXiv: 0705.0532v2, 2008.
143

Li, T. C.; Lu, S. -P. Quantum conductance of graphene nanoribbons with edge defects. Phys. Rev. B. 2008, 77, 085408.

144

Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.

145

Fiori, G.; Yoon, Y.; Hong, S.; Iannaccone, G.; Guo, J. Performance comparison of graphene nanoribbon Schottky barrier and MOS FETs. In Int. Electron Device Meeting (IEDM) Tech. Dig. 2007, pp. 757–760.

146

Basu, D.; Gilbert, M. J.; Register, L. F.; Banerjee, S. K.; MacDonald, A. H. Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 2008, 92, 042114.

147

Wimmer, M.; Adagideli, I.; Berber, S.; Tománek, D; Richter, K. Spin transport in rough graphene nanoribbons. Phys. Rev. Lett. 2008, 100, 177207.

148

Yoon, Y.; Fiori, G.; Hong, S.; Iannaccone, G.; Guo, J. Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Transactions on Electron Devices 2008, 55, 2314–2323.

149

Ouyang, Y.; Wang, X.; Dai, H.; Guo, J. Carrier scattering in graphene nanoribbon transistors. Appl. Phys. Lett. 2008, 92, 243124.

150

Shon N. H.; Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 1998, 67, 2421–2429.

151

Nomura K.; MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 2006, 96, 256602.

152

Lherbier, A.; Biel, B.; Niquet, Y. M.; Roche, S. Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects. Phys. Rev. Lett. 2008, 100, 036803.

153

Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 2008, 73, 125411.

154

Hwang, E. H.; Adam, S.; Das Sarma, S. Carrier transport in two-dimensional graphene layers Phys. Rev. Lett. 2007, 98, 186806.

155

Dong, H. M.; Xu, W.; Zeng, Z.; Peeters, F. M. Quantum and transport conductivities in monolayer graphene. Phys. Rev. B 2008, 77, 235402.

156

Nomura, K.; Ryu S.; Koshino, M.; Mudry, C.; Furusaki A. Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field. Phys. Rev. Lett. 2008, 100, 246806.

157
Kim, E. -A.; Castro Neto, A. H. Graphene as an electronic membrane. arXiv: cond-mat/0702562v2, 2008.
158

Suzuura, H.; Ando, T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Phys. Rev. Lett. 2002, 89, 266603.

159

Ostrovsky, P. M.; Gornyi, I. V.; Mirlin, A. D. Quantum criticality and minimal conductivity in graphene with long-range disorder. Phys. Rev. Lett. 2007, 98, 256801.

160

Bardarson, J. H.; Tworzyd–o, J.; Brouwer, P. W.; Beenakker, C. W. J. One-parameter scaling at the Dirac point in graphene. Phys. Rev. Lett. 2007, 99, 106801.

161

Guinea, F.; Katsnelson, M. I.; Vozmediano, M. A. H. Midgap states and charge inhomogeneities in corrugated graphene. Phys. Rev. B 2008, 77, 075422.

162

Novikov, D. S. Numbers of donors and acceptors from transport measurements in graphene. Appl. Phys. Lett. 2007, 91, 102102.

163

Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. PNAS. 2007, 104, 18392.

164

Lherbier, A.; Blase X., M.; Niquet, Y. M.; Triozon, F.; Roche S. Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 2008, 101, 036808.

165

Tan, Y. W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

166

Koshino, M.; Ando, T. Hall plateau diagram for the Hofstadter butterfly energy spectrum. Phys. Rev. B 2006, 73, 155304.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 August 2008
Revised: 22 September 2008
Accepted: 23 September 2008
Published: 01 October 2008
Issue date: October 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

We acknowledge fruitful and enlightening discussions with Tsuneya Ando, Hongjie Dai, Toshiaki Enoki, Philip Kim, Kentaro Nomura, Rudolf A. Roemer, Riichiro Saito, Miriam del Valle, and Carter T. White. This work was partially supported by the ANR/PNANO project ACCENT, by the FP7/ ICT/FET GRAND project, by the "Graphene Project" of CARNOT Institute-Leti, by the European Union project "Carbon Nanotube Devices at the Quantum Limit" (CARDEQ) under contract No. IST-021285, by the Volkswagen Stiftung under Grant No. I/78 340, by the DFG Priority Program "Quantum Transport at the Molecular Scale" SPP1243 and by DAAD. Computing time provided by the ZIH at the Dresden University of Technology is also acknowledged.

Rights and permissions

This article is published with open access at Springerlink.com

Return