Journal Home > Volume 1 , Issue 5

The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 μm and heights within the range of the molecular height of the carborance-tipped axles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanotrains and Self-Assembled Two-Dimensional Arrays Built from Carboranes Linked by Hydrogen Bonding of Dipyridones

Show Author's information Takashi SasakiJason M. GuerreroAshley D. LeonardJames M. Tour( )
Department of ChemistryDepartment of Mechanical Engineering and Materials ScienceRice UniversityMS 2226100 Main St.HoustonTexas77005USA

Abstract

The strong hydrogen bonding ability of 2-pyridones were exploited to build nanotrains on surfaces. Carborane wheels on axles difunctionalized with 2-pyridone hydrogen bonding units were synthesized and displayed spontaneous formation of linear nanotrains by self-assembly on SiO2 or mica surfaces. Imaging using atomic force microscopy confirmed linear formations with lengths up to 5 μm and heights within the range of the molecular height of the carborance-tipped axles.

Keywords: hydrogen bonding, Nanovehicles, nanotrains, 2-pyridone, self-assemblyIntroduction

References(62)

1

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312–1319.

2

Lindsey, J. S. Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: A review. New J. Chem. 1991, 15, 153–180.

3

Philp, D.; Stoddart, J. F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 1996, 35, 1154–1196.

4

Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Self-assembling organic nanotubes. Angew. Chem., Int. Ed. 2001, 40, 988–1011.

DOI
5

Miao, Q.; Lefenfeld, M.; Nguyen, T. -Q.; Siegrist, T.; Kloc, C.; Nuckolls, C. Self-assembly and electronics of dipolar linear acenes. Adv. Mater. 2005, 17, 407–412.

6

Yip, H, -L.; Ma, H.; Jen, A. K. -Y.; Dong, J.; Parviz, B. A. Two-dimensional self-assembly of 1-pyrylphosphonic acid: Transfer of stacks on structured surface. J. Am. Chem. Soc. 2006, 128, 5672–5679.

7

Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Jamssen, R. A. J.; Meijer, E. W.; Herwig, P., et. al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401, 685–688.

8

van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.; Müllen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. Meso-epitaxial solution-growth of self-organizing discotic liquid-crystalline semiconductors. Adv. Mater. 2003, 15, 495–499.

9

Faccheti, A.; Mushrush, M.; Yoon, M. H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Building blocks for n-type molecular and polymeric electronics. Perfluoroalkyl- versus alkyl-functionalized oligothiophenes (nT; n = 2–6) Systematics of thin film microstructure, semiconductor performance, and modeling of majority charge injection in field-effect transistors. J. Am. Chem. Soc. 2004, 126, 13859–13874.

10

Wu, Y.; Li, Y.; Gardner, S.; Ong, B. S. Indolo[3, 2-b]carbazole-based thin-film transistors with high mobility and stability. J. Am. Chem. Soc. 2005, 127, 614–618.

11

Kautz, H.; van Beek, D. J. M.; Sijbesma, R. P.; Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 2006, 39, 4265–4267.

12

Schmidt-Mende, L.; Fehtenkotter A.; Müllen, K.; Moons, E.; Friend, R. H.; Mackenzie, J. D. Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293, 1119–1122.

13

Yang, X. N.; van Duren, J. K. J.; Rispens, M. T.; Hummelen, J. C.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J. Crystalline organization of a methanofullerene as used for plastic solar-cell applications. Adv. Mater. 2004, 16, 802–806.

14

Koert, U.; Harding, M. M.; Lehn, J. M. DNH deoxyribonu-cleohelicates: Self assembly of oligonucleosidic double-helical metal complexes. Nature 1990, 346, 339–342.

15

Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-assembly of disk-shaped molecules to coiled-coil aggregates with tunable helicity. Science 1999, 284, 785–788.

16

Hirschberg, J. H. K. K.; Brunsverld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E. W. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs. Nature 2000, 407, 167–170.

17

Percec, V.; Glodde, M.; Bera, T. K.; Miura, Y.; Shiyanovskaya, I.; Singer, K. D.; Balagurusamy, V. S. L.; Heiney, P. A.; Schnell, I.; Rapp, A., et al. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 2002, 419, 384–387.

18

Yamamoto, T.; Fukushima, T.; Yamamoto, Y.; Kosaka, A.; Jin, W.; Ishii, N.; Aida, T. Stabilization of a kinetically favored nanostructure: Surface ROMP of self-assembled conductive nanocoils from a norbornene-appended hexa-peri-hexabenzocoronene. J. Am. Chem. Soc. 2006, 128, 14337–14340.

19

Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. D.; Schenning, A. P. H. J.; de Schryver, F. C.; Meijer, E. W. π-Conjugated oligo-(p-phenylenevinylene) rosettes and their tubular self-assembly. Angew. Chem. Int. Ed. 2004, 43, 74–78.

20

Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature, 1993, 366, 324–327.

21

Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303, 65–67.

22

Baxter, P. N. W.; Lehn, J. M.; Fischer, J.; Youinou, M. Self-assembly and structure of a 3 × 3 inorganic grid from nine silver ions and six ligand components. Angew. Chem. Int. Ed. Engl. 1994, 33, 2284–2287.

23

Weissbuch, I.; Baxter, P. N. W.; Cohen, S.; Cohen, H.; Kjaer, K.; Howes, P. B.; Als-Nielsen J.; Hanan, G. S.; Schubert, U. S.; Lehn, J, M., et al. Self-assembly at the air-water interface: In-situ preparation of thin films of metal ion grid architectures. J. Am. Chem. Soc. 1998, 120, 4850–4860.

24

Ruben, M.; Rojo, J.; Romero-Saluguero, F. J.; Uppadine, L. H.; Lehn, J. M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem., Int. Ed. 2004, 43, 3644–3662.

25

Zerowski, J. A.; Whitesides, G. M. Steric control of secondary, solid-state architecture in 1: 1 complexes of melamines and barbiturates that crystallize as crinkled tapes. J. Am. Chem. Soc. 1994, 116, 4298–4304.

26

Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R. Hydrothermal synthesis of organic channel structures: 1: 1 hydrogen-bonded adducts of melamine with cyanuric and trithiocyanuric acids. J. Am. Chem. Soc. 1999, 121, 1752–1753.

27

Prins, L. J.; de Jong, F.; Timmerman, P.; Reinhoudt, D. N. An enantiomerically pure hydrogen-bonded assembly. Nature 2000, 408, 181–184.

28

Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mammen, M.; Gordon, D. M. Noncovalent synthesis: Using physical-organic chemistry to make aggregates. Acc. Chem. Res. 1995, 28, 37–44.

29

Highfill, M. L.; Chandrasekaran, A.; Lynch, D. E.; Hamilton, D. A. Superstructural variety from an alkylated triazine: Formation of one-dimensional hydrogen-bonded arrays or cyclic rosettes. Cryst. Growth Des. 2002, 2, 15–20.

30

Kolotuchin, S. V.; Zimmerman, S. C. Self-assembly mediated by the donor-donor-acceptor·acceptor-acceptor-donor (DDA·AAD) hydrogen-bonding motif: Formation of a robust hexameric aggregate. J. Am. Chem. Soc. 1998, 120, 9092–9093.

31

Marsh, A.; Silvestri, M.; Lehn, J. M. Self-complementary hydrogen bonding heterocycles designed for the enforced self-assembly into supramolecular macrocycles. Chem. Commun. 1996, 1527–1528.

32

Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997.

33

Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D.; Vögtle, F.; Lehn, J. -M. Comprehensive Supramolecular Chemistry; Pergamon: New York, 1996.

34

Simard, M.; Su, D.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers. J. Am. Chem. Soc. 1991, 113, 4696–4698.

35

Edwards, M. R.; Jones, W.; Motherwell, W. D. S. Influence of dicarboxylic acid structure on tape networks in co-crystals of 2-pyridone. Cryst. Eng. 2002, 5, 25–36.

36

Ducharme, Y.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Extensive, self-complementary arrays of donors and acceptors. J. Org. Chem. 1988, 53, 5787–5789.

37

Gallant, M.; Viet, M. T. P.; Wuest, J. D. Use of hydrogen bonds to control molecular aggregation: Association of dipyridones joined by flexible spacers. J. Org. Chem. 1991, 56, 2284–2286.

38

Heinz, R.; Rabe, J. P.; Meister, W. -V.; Hoffmann, S. Structure and dynamics of two-dimensional adlayers of a 2-pyridone smectogen studied by STM. Thin Solid Films 1995, 264, 246–249.

39

Thwaite, S.; Schier, A.; Schmidbaur, H. The auration of 2-hydroxy-pyridine (2-pyridone): Preparative and structural studies and a comparison with reactions of related aliphatic O, N-donors. Inorg. Chim. Acta. 2004, 357, 1549–1557.

40

Miyabayashi, T.; Hara, T.; Yamagata, T.; Mashima, K. Chlorido(6-diphenylphosphino-2-pyridonato- k 2P, N)(6-diphenylphosphino-2-hydroxypyridine- k 2P, N)hydridoiridium(III) chloroform 1.896-solvate. Acta Crystallogr. E 2007, 63, m576–m578.

41

Nichol, G. S.; Clegg, W. Complexes of 6-methyl-2-pyridone with the alkaline earth metals magnesium, strontium and barium: Synthesis and structural characterisation. Inorg. Chim. Acta 2006, 359, 3474–3480.

42

Murugavel, R.; Kuppuswamy, S.; Boomishankar, R.; Steiner, A. Hierarchical structures built from a molecular zinc phosphate core. Angew. Chem. Int. Ed. 2006, 45, 5536–5540.

43

Chuchuryukin, A. V.; Chase, P. A.; Mills, A. M.; Lutz, M.; Spek, A. L.; van Klink, G. P. M.; van Koten, G. Hydroxy- and mercaptopyridine pincer platinum and palladium complexes generated by silver-free halide abstraction. Inorg. Chem. 2006, 5, 2045–2054.

44

Barth, J. V.; Constantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

45

Barth, J. V.; Weckesser, J.; Cai, C.; Günter, P.; Bürgi, L.; Jeandupeux O.; Kern, K. Building supramolecular nanostructures at surfaces by hydrogen bonding. Angew. Chem. Int. Ed. 2000, 39, 1230–1234.

DOI
46
West, P.; Ross. A. An Introduction to Atomic Force Microscopy Modes. Pacific Nanotoechnology, Inc. http://www.pacificnanotech.com/afm-modes_material-property-modes.html (accessed 2006)
47

Takamatsu, D.; Yamakoshi, Y.; Fukui, K. Control of probe function in noncontact atomic force microscopy using photo-responsive molecular tip. Surf. Sci. Nanotech. 2006, 4, 249–253.

48

Marcus, R. B.; Ravi, T. S.; Gmitter, T.; Chin, K.; Orvis, W. J.; Ciarlo, D. R.; Hunt, C. E.; Trujillo, J. Formation of silicon tips with <1 nm radius. Appl. Phys. Lett. 1990, 56, 236–238.

DOI
49
HI-RES tips with tip radius of ~1 nm are commercially available from MikroMasch, Inc., http://www.spmtips.com (accessed 21 October, 2008)
50

Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Directional control in thermally driven single-molecule nanocars. Nano Lett. 2005, 5, 2330–2334.

51

Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Yu-Hung, C.; Sasaki, T.; Morin, J. -F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.

52

Shirai Y.; Morin, J. -F.; Sasaki, T.; Guerrero, J. M.; Tour, J. M. Recent progress on nanovehicles. Chem. Soc. Rev. 2006, 35, 1043–1055.

53

Morin, J. -F.; Shirai, Y.; Tour, J. M. En route to a motorized nanocar. Org. Lett. 2006, 8, 1713–1716.

54

Sasaki, T.; Tour, J. M. Synthesis of a dipolar nanocar. Tetrahedron Lett. 2007, 48, 5821–5824.

55

Sasaki, T.; Morin, J. -F.; Lu, M.; Tour, J. M. Synthesis of a single-molecule nanotruck. Tetrahedron Lett. 2007, 48, 5817–5820.

56

Morin, J. -F.; Sasaki, T.; Shirai. Y.; Guerrero J. M.; Tour, J. M. Synthetic routes toward carborane-wheeled nanocars. J. Org. Chem. 2007, 72, 9481–9490.

57

Sasaki, T, Osgood, A. J.; Alemany, L. B.; Kelly, K. F.; Tour, J. M. Synthesis of a nanocar with an angled chassis: Towards circling movement. Org. Lett. 2008, 10, 229–232.

58

Sasaki, T.; Tour, J. M. Synthesis of a new photoactive nanovehicle: Nanoworm. Org. Lett. 2008, 10, 897–900.

59

Sasaki, T.; Osgood, A. J.; Kiappes, J. L. Kelly, K. F.; Tour, J. M. Synthesis of a porphyrin-fullerene pinwheel. Org. Lett. 2008, 10, 1377–1380.

60

Sasaki, T.; Guerrero J. M.; Tour, J. M. The assembly line: Self-assembling nanocars. Tetrahedron 2008, 64, 8522–8529.

61

Morgan, D. A.; Sloan, J.; Green, M. L. H. Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem. Commun. 2002, 2442–2443.

62

Bodwell, G. J.; Miller, D. O.; Vermeij, R. J. Nonplanar aromatic compounds 6. [2]Paracyclo[2](2, 7)pyrenophane. A novel strained cyclophane and a first step on the road to a "Vögtle" belt. Org. Lett. 2001, 3, 2093–2096.

File
nr-1-5-412_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 07 May 2008
Revised: 18 September 2008
Accepted: 20 September 2008
Published: 01 October 2008
Issue date: October 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

We thank the Welch Foundation, Zyvex Corporation, American Honda Motor Co., the NSF NIRT 07111302, and the NSF Penn State MRSEC for financial support. The NSF, CHEM 0075728, provided partial funding for the 400 MHz NMR spectrometer. We thank Drs. I. Chester of FAR Research, Inc. and R. Awartari of Petra Research, Inc. for providing trimethylsily lacetylene (TMSA).

Rights and permissions

This article is published with open access at Springerlink.com

Return