Journal Home > Volume 1 , Issue 4

We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profile along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confirmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with finite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Imaging Electronic Structure of Carbon Nanotubes by Voltage-Contrast Scanning Electron Microscopy

Show Author's information Aravind Vijayaraghavan1( )Sabine Blatt1,2Christoph Marquardt1,2Simone Dehm1Raghav Wahi1<Frank Hennrich1Ralph Krupke1( )
Institut für NanotechnologieForschungszentrum KarlsruheD-76344Eggenstein-LeopoldshafenGermany
Physikalisches InstitutUniversität KarlsruheD-76021KarlsruheGermany

§ Present address: Rice University, Houston, TX 77251, USA

Abstract

We introduce voltage-contrast scanning electron microscopy (VC-SEM) for visual characterization of the electronic properties of single-walled carbon nanotubes. VC-SEM involves tuning the electronic band structure and imaging the potential profile along the length of the nanotube. The resultant secondary electron contrast allows to distinguish between metallic and semiconducting carbon nanotubes and to follow the switching of semiconducting nanotube devices, as confirmed by in situ electrical transport measurements. We demonstrate that high-density arrays of individual nanotube devices can be rapidly and simultaneously characterized. A leakage current model in combination with finite element simulations of the device electrostatics is presented in order to explain the observed contrast evolution of the nanotube and surface electrodes. This work serves to fill a void in electronic characterization of molecular device architectures.

Keywords: Carbon nanotubes, electronic properties, electrostatics, voltage-contrast scanning electron microscopy

References(37)

1

McEuen, P. L. Single-wall carbon nanotubes. Phys. World 2000, 13, 31-36.

2

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic-structure of graphene tubules based on C60. Phys. Rev. B 1992, 46, 1804-1811.

3

Oron-Carl, M.; Hennrich, F.; Kappes, M. M.; Lohneysen, H. V.; Krupke, R. On the electron-phonon coupling of individual single-walled carbon nanotubes. Nano Lett. 2005, 5, 1761-1767.

4

Qian, H. H.; Gokus, T.; Anderson, N.; Novotny, L.; Meixner, A. J.; Hartschuh, A. Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes. Phys. Status Solidi B 2006, 243, 3146-3150.

5

Venema, L. C.; Janssen, J. W.; Buitelaar, M. R.; Wildoer, J. W. G.; Lemay, S. G.; Kouwenhoven, L. P.; Dekker, C. Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes. Phys. Rev. B 2000, 62, 5238-5244.

6

Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59-62.

7

Jiang, H.; Nasibulin, A. G.; Brown, D. P.; Kauppinen, E. I. Unambiguous atomic structural determination of single-walled carbon nanotubes by electron diffraction. Carbon 2007, 45, 662-667.

8

Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 2004, 92, 046401.

9

Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082-6085.

10

Seiler, H. Secondary electron emission in the scanning electron microscope. J. Appl. Phys. 1983, 54, R1-R18.

11

Homma, Y.; Suzuki, S.; Kobayashi, Y.; Nagase, M.; Takagi, D. Mechanism of bright selective imaging of single-walled carbon nanotubes on insulators by scanning electron microscopy. Appl. Phys. Lett. 2004, 84, 1750-1752.

12

Brintlinger, T.; Chen, Y. F.; Durkop, T.; Cobas, E.; Fuhrer, M. S.; Barry, J. D.; Melngailis, J. Rapid imaging of nanotubes on insulating substrates. Appl. Phys. Lett. 2002, 81, 2454-2456.

13

Zhang, R. Y.; Wei, Y.; Nagahara, L. A.; Amlani, I.; Tsui, R. K. The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes. Nanotechnology 2006, 17, 272-276.

14

Vijayaraghavan, A.; Kanzaki, K.; Suzuki, S.; Kobayashi, Y.; Inokawa, H.; Ono, Y.; Kar, S.; Ajayan, P. M. Metal-semiconductor transition in single-walled carbon nanotubes induced by low-energy electron irradiation. Nano Lett. 2005, 5, 1575-1579.

15

Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R. Reversible metal-insulator transitions in metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 2767-2772.

16

Pfeiffer, H. C.; Langner, G. O.; Stickel, W.; Simpson, R. A. Contactless electrical testing of large area specimens using electron beams. J. Vac. Sci. Tech. 1981, 19, 1014-1018.

17

Buzzo, M.; Ciappa, M.; Millan, J.; Godignon, P.; Fichtner, W. Two-dimensional dopant imaging of silicon carbide devices by secondary electron potential contrast. Microelectron. Eng. 2007, 84, 413-418.

18

Croitoru, M. D.; Bertsche, G.; Kern, D. P.; Burkhardt, C.; Bauerdick, S.; Sahakalkan, S.; Roth, S. Visualization and in situ contacting of carbon nanotubes in a scanning electron microscope. J. Vac. Sci. Tech. B 2005, 23, 2789-2792.

19

Jesse, S.; Guillorn, M. A.; Ivanov, I. N.; Puretzky, A. A.; Howe, J. Y.; Britt, P. F.; Geohegan, D. B. In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites. Appl. Phys. Lett. 2006, 89, 013114.

20

Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. Raman spectroscopy of individual single-walled carbon nanotubes from various sources. J. Phys. Chem. B 2005, 109, 10567-10573.

21

Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M. Length separation studies of single walled carbon nanotube dispersions. Phys. Status Solidi B 2006, 243, 3073-3076.

22

Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 2007, 7, 1556-1560.

23

Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. J. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541-1544.

24
www.pdesolutions.com.
25

Konrad, A.; Graovac, M. The finite element modeling of conductors and floating potentials. IEEE T. Magn. 1996, 32, 4329-4331.

26

Jaksch, H. Zeiss NTS GmbH. Private communication.

27

Wells, O. C. Scanning electron microscopy McGraw-Hill: New York, 1974.

28

Martel, R.; Derycke, V.; Lavoie, C.; Appenzeller, J.; Chan, K. K.; Tersoff, J.; Avouris, P. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 256805.

29

Jarillo-Herrero, P.; Sapmaz, S.; Dekker, C.; Kouwenhoven, L. P.; van der Zant, H. S. J. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 2004, 429, 389-392.

30

Tersoff, J. Contact resistance of carbon nanotubes. Appl. Phys. Lett. 1999, 74, 2122-2124.

31

White, C. T.; Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 1998, 393, 240-242.

32

Krupke, R.; Malik, S.; Weber, H. B.; Hampe, O.; Kappes, M. M.; von Lohneysen, H. Patterning and visualizing self-assembled monolayers with low-energy electrons. Nano Lett. 2002, 2, 1161-1164.

33

Kanaya, K.; Okayama, S. Penetration and energy-loss theory of electrons in solid targets. J. Phys. D: Appl. Phys. 1972, 5, 43-58.

34

Anderson, N.; Hartschuh, A.; Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 2007, 7, 577-582.

35

Antonov, R. D.; Johnson, A. T. Subband population in a single-wall carbon nanotube diode. Phys. Rev. Lett. 1999, 83, 3274-3276.

36

John, D. L.; Castro, L. C.; Pereira, P. J. S.; Pulfrey, D. L. A Schrödinger-Poisson solver for modeling carbon nanotube FETs. Nanotechnology 2004, 3, 65-68.

37

Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-The route toward applications. Science 2002, 297, 787-792.

Video
nr-1-4-321_ESM_movie_1.mov
nr-1-4-321_ESM_movie_2.mov
nr-1-4-321_ESM_movie_3.mov
nr-1-4-321_ESM_movie_4.mov
nr-1-4-321_ESM_movie_5.mov
nr-1-4-321_ESM_movie_6.mov
File
nr-1-4-321_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 May 2008
Revised: 27 August 2008
Accepted: 27 August 2008
Published: 01 October 2008
Issue date: August 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

The authors acknowledge Ferdinand Evers, Matthias Hettler and David John for helpful discussions. The research was funded by the Initiative and Networking Fund of the Helmholtz-Gemeinschaft Deutscher Forschungszentren and equipment grant from Agilent Technologies.

Rights and permissions

This article is published with open access at Springerlink.com

Return