Journal Home > Volume 1 , Issue 4

Singled-walled carbon nanotubes (SWNTs), in the form of ultrathin films of random networks, aligned arrays, or anything in between, provide an unusual type of electronic material that can be integrated into circuits in a conventional, scalable fashion. The electrical, mechanical, and optical properties of such films can, in certain cases, approach the remarkable characteristics of the individual SWNTs, thereby making them attractive for applications in electronics, sensors, and other systems. This review discusses the synthesis and assembly of SWNTs into thin film architectures of various types and provides examples of their use in digital electronic circuits with levels of integration approaching 100 transistors and in analog radio frequency (RF) systems with operating frequencies up to several gigahertz, including transistor radios in which SWNT transistors provide all of the active functionality. The results represent important steps in the development of an SWNT-based electronics technology that could find utility in areas such as flexible electronics, RF analog devices and others that might complement the capabilities of established systems.


menu
Abstract
Full text
Outline
About this article

Random Networks and Aligned Arrays of Single-Walled Carbon Nanotubes for Electronic Device Applications

Show Author's information Qing Cao1John A. Rogers1,2,3,4,5,6( )
Department of ChemistryUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA
Department of Materials Science and EngineeringUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA
Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA
Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA
Frederick-Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA
Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana-Champaign, UrbanaIllinois61801USA

Abstract

Singled-walled carbon nanotubes (SWNTs), in the form of ultrathin films of random networks, aligned arrays, or anything in between, provide an unusual type of electronic material that can be integrated into circuits in a conventional, scalable fashion. The electrical, mechanical, and optical properties of such films can, in certain cases, approach the remarkable characteristics of the individual SWNTs, thereby making them attractive for applications in electronics, sensors, and other systems. This review discusses the synthesis and assembly of SWNTs into thin film architectures of various types and provides examples of their use in digital electronic circuits with levels of integration approaching 100 transistors and in analog radio frequency (RF) systems with operating frequencies up to several gigahertz, including transistor radios in which SWNT transistors provide all of the active functionality. The results represent important steps in the development of an SWNT-based electronics technology that could find utility in areas such as flexible electronics, RF analog devices and others that might complement the capabilities of established systems.

Keywords: Carbon nanotubes, electronic devices, thin-film transistors

References(64)

1

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

2

Ouyang, M.; Huang, J. L.; Lieber, C. M. Fundamental electronic properties and applications of single-walled carbon nanotubes. Acc. Chem. Res. 2002, 35, 1018–1025.

3

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

4

Bozovic, D.; Bockrath, M.; Hafner, J. H.; Lieber, C. M.; Park, H.; Tinkham, M. Plastic deformations in mechanically strained single-walled carbon nanotubes. Phys. Rev. B 2003, 67, 033407.

5

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

6

Zhou, Y. X.; Gaur, A.; Hur, S. H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-Channel, n-channel thin film transistors and p–n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031–2035.

7

Snow, E. S.; Novak, J. P.; Lay, M. D.; Houser, E. H.; Perkins, F. K.; Campbell, P. M. Carbon nanotube networks: Nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 2004, 22, 1990–1994.

8

Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

9

Alam, M. A.; Pimparkar, N.; Kumar, S.; Murthy, J. Theory of nanocomposite network transistors for macroelectronics applications. MRS Bull. 2006, 31, 466–470.

10

Lee, M.; Im, J.; Lee, B. Y.; Myung, S.; Kang, J.; Huang, L.; Kwon, Y. K.; Hong, S. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nat. Nanotechnol. 2006, 1, 66–71.

11

LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

12

Huang, L. M.; Jia, Z.; O'Brien, S. Orientated assembly of single-walled carbon nanotubes and applications. J. Mater. Chem. 2007, 17, 3863–3874.

13

Li, Y. L.; Zhang, L. H.; Zhong, X. H.; Windle, A. H. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions. Nanotechnology 2007, 18, 225604.

14

Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H. J. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141–16145.

15

Cao, Q.; Hur, S. -H.; Zhu, Z. -T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

16

Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

17

Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533–3539.

18

Odintsov, A. A. Schottky barriers in carbon nanotube heterojunctions. Phys. Rev. Lett. 2000, 85, 150–153.

19

Fuhrer, M. S.; Nygard, J.; Shih, L.; Forero, M.; Yoon, Y. G.; Mazzoni, M. S. C.; Choi, H. J.; Ihm, J.; Louie, S. G.; Zettl, A.; McEuen, P. L. Crossed nanotube junctions. Science 2000, 288, 494–497.

20

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

21

Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

22

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

23

Zhou, W.; Rutherglen, C.; Burke, P. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.

24

Dai, H. J. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.

25

Hur, S. -H.; Park, O. O.; Rogers, J. A. Extreme bendability in thin film transistors that use carbon nanotubes transferred from high temperature growth substrates. Appl. Phys. Lett. 2005, 86, 243502.

26

Kang, S. J.; Kocabas, C.; Kim, H. S.; Cao, Q.; Meitl, M. A.; Khang, D. Y.; Rogers, J. A. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic, applications. Nano Lett. 2007, 7, 3343–3348.

27

Cao, Q.; Xia, M. G.; Shim, M.; Rogers, J. A. Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p–n diodes on plastic substrates. Adv. Funct. Mater. 2006, 16, 2355–2362.

28

Hur, S. H.; Yoon, M. H.; Gaur, A.; Shim, M.; Facchetti, A.; Marks, T. J.; Rogers, J. A. Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. J. Am. Chem. Soc. 2005, 127, 13808–13809.

29

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

30

Hur, S. -H.; Kocabas, C.; Gaur, A.; Shim, M.; Park, O. O.; Rogers, J. A. Printed thin film transistors and complementary logic gates that use polymer coated single-walled carbon nanotube networks. J. Appl. Phys. 2005, 98, 114302.

31

Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J. Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc. 2001, 123, 11512–11513.

32

Cao, Q.; Zhu, Z. T.; Lemaitre, M. G.; Xia, M. G.; Shim, M.; Rogers, J. A. Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes. Appl. Phys. Lett. 2006, 88, 113511.

33

Fortunato, E.; Barquinha, P.; Pimentel, A.; Goncalves, A.; Marques, A.; Pereira, L.; Martins, R. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594.

34

Collins, P. C.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.

35

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

36

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974–977.

37

Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kittrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.

38

Wang, C. J.; Cao, Q.; Ozel, T.; Gaur, A.; Rogers, J. A.; Shim, M. Electronically selective chemical functionalization of carbon nanotubes: Correlation between Raman spectral and electrical responses. J. Am. Chem. Soc. 2005, 127, 11460–11468.

39

Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394.

40

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

41

Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of "striping" for improved on/off ratio in carbon nanonet thin film transistors, 2008, unpublished work.

DOI
42

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

43

Pimparkar, N.; Kocabas, C.; Kang, S. J.; Rogers, J.; Alam, M. A. Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 2007, 28, 593–595.

44

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

45

Chen, J.; Klinke, C.; Afzali, A.; Avouris, P. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 2005, 86, 123108.

46

Zhang, Y.; Ichihashi, T.; Landree, E.; Nihey, F.; Iijima, S. Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 1999, 285, 1719–1722.

47

Seidel, R. V.; Graham, A. P.; Rajasekharan, B.; Unger, E.; Liebau, M.; Duesberg, G. S.; Kreupl, F.; Hoenlein, W. Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 2004, 96, 6694–6699.

48

Baumgardner, J. E.; Pesetski, A. A.; Murduck, J. M.; Przybysz, J. X.; Adam, J. D.; Zhang, H. Inherent linearity in carbon nanotube field-effect transistors. Appl. Phys. Lett. 2007, 91, 052107.

49

Appenzeller, J. Carbon nanotubes for high-performance electronics–Progress and prospect. Proc. IEEE 2008, 96, 201–211.

50

Zhong, Z. H.; Gabor, N. M.; Sharping, J. E.; Gaeta, A. L.; McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nanotechnol. 2008, 3, 201–205.

51

Le Louarn, A.; Kapche, F.; Bethoux, J. M.; Happy, H.; Dambrine, G.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P.; Derycke, V.; Chenevier, P.; Izard, N.; Goffman, M. F.; Bourgoin, J. P. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl. Phys. Lett. 2007, 90, 233108.

52

Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1405–1409.

53

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Baumgardner, J. E.; Pesetski, A. A.; Zhang, H.; Banks, T.; Feng, M.; Rogers, J. A. High frequency performance of sub-micron quasi-ballistic carbon nanotube array transistors, 2008, unpublished work.

54

Nouchi, R.; Tomita, H.; Ogura, A.; Kataura, H.; Shiraishi, M. Logic circuits using solution-processed single-walled carbon nanotube transistors. Appl. Phys. Lett. 2008, 92, 253507.

55

Patil, N.; Lin, A.; Myers, E. R.; Wong, H. S. P.; Mitra, S. Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures. Proc. VLSI Technology Symp. 2008, 205–206.

56

Crone, B.; Dodabalapur, A.; Lin, Y. Y.; Filas, R. W.; Bao, Z.; LaDuca, A.; Sarpeshkar, R.; Katz, H. E.; Li, W. Large-scale complementary integrated circuits based on organic transistors. Nature 2000, 403, 521–523.

57

Menard, E.; Meitl, M. A.; Sun, Y. G.; Park, J. U.; Shir, D. J. L.; Nam, Y. S.; Jeon, S.; Rogers, J. A. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 2007, 107, 1117–1160.

58

Chason, M.; Brazis, P. W.; Zhang, H.; Kalyanasundaram, K.; Gamota, D. R. Printed organic semiconducting devices. Proc. IEEE 2005, 93, 1348–1356.

59

Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Kocabas, C.; Banks, T.; Rogers, J. A.; Adam, J. D. A 500 MHz carbon nanotube field-effect transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.

60

Reuss, R. H.; Chalamala, B. R.; Moussessian, A.; Kane, M. G.; Kumar, A.; Zhang, D. C.; Rogers, J. A.; Hatalis, M.; Temple, D.; Moddel, G.; Eliasson, B. J.; Estes, M. J.; Kunze, J.; Handy, E. S.; Harmon, E. S.; Salzman, D. B.; Woodall, J. M.; Alam, M. A.; Murthy, J. Y.; Jacobsen, S. C.; Olivier, M.; Markus, D.; Campbell, P. M.; Snow, E. Macroelectronics: Perspectives on technology and applications. Proc. IEEE 2005, 93, 1239–1256.

61

Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

62

Sun, Y. G.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

63

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

64

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 July 2008
Revised: 26 August 2008
Accepted: 26 August 2008
Published: 01 October 2008
Issue date: August 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

We thank T. Banks, K. Colravy, and D. Sievers for help with the processing. This work was supported by DARPA-funded AFRL-managed Macroelectronics Program Contract FA8650-04-C-7101, the National Science Foundation (NSF) through grant NIRT-0403489, the U.S. Department of Energy through grant DE-FG02-07ER46471, the Frederick Seitz Materials Research Lab and the Center for Microanalysis of Materials in University of Illinois which is funded by U.S. Department of Energy through grant DE-FG02-07ER46453 and DE-FG02-07ER46471, the Center for Nanoscale Chemical Electrical Mechanical Manufacturing Systems in University of Illinois which is funded by the NSF through grant DMI-0328162, Motorola Inc., Intel Corp., DuPont Corp., and Northrop Grumman.

Rights and permissions

This article is published with open access at Springerlink.com

Return