Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Traditional Chinese painting (TCP) is an invaluable cultural heritage resource and a unique visual art style. In recent years, there has been a growing emphasis on the digitalization of TCP for cultural preservation and revitalization. The resulting digital copies have enabled the advancement of computational methods for a structured and systematic understanding of TCP. To explore this topic, we conduct an in-depth analysis of 94 pieces of literature. We examine the current use of computer technologies on TCP from three perspectives, based on numerous conversations with specialists. First, in light of the “Six Principles of Painting” theory, we categorize the articles according to their research focus on artistic elements. Second, we create a four-stage framework to illustrate the purposes of TCP applications. Third, we summarize the popular computational techniques applied to TCP. This work also provides insights into potential applications and prospects, with professional opinion.
Bradley A J, El-Assady M, Coles K, Alexander E, Chen M, Collins C, Jänicke S, Wrisley D J. Visualization and the digital humanities. IEEE Computer Graphics and Applications , 2018, 38(6): 26–38. DOI: 10.1109/MCG.2018. 2878900.
Fu Y F, Yu H C, Yeh C K, Zhang J J, Lee T Y. High relief from brush painting. IEEE Trans. Visualization and Computer Graphics , 2019, 25(9): 2763–2776. DOI: 10. 1109/TVCG.2018.2860004.
Zhang F Q, Gao H M, Lai Y P. Detail-preserving CycleGAN-AdaIN framework for image-to-ink painting translation. IEEE Access , 2020, 8: 132002–132011. DOI: 10.1109/ACCESS.2020.3009470.
DiVerdi S. A modular framework for digital painting. IEEE Trans. Visualization and Computer Graphics , 2015, 21(7): 783–793. DOI: 10.1109/TVCG.2015.2403352.
Zhang J J, Miao Y W, Yu J H. A comprehensive survey on computational aesthetic evaluation of visual art images: Metrics and challenges. IEEE Access , 2021, 9: 77164–77187. DOI: 10.1109/ACCESS.2021.3083075.
Kyprianidis J E, Collomosse J, Wang T H, Isenberg T. State of the “art”: A taxonomy of artistic stylization techniques for images and video. IEEE Trans. Visualization and Computer Graphics , 2013, 19(5): 866–885. DOI: 10.1109/TVCG.2012.160.
Li M, Wang Y, Xu Y Q. Computing for Chinese cultural heritage. Visual Informatics , 2022, 6(1): 1–13. DOI: 10.1016/j.visinf.2021.12.006.
Bo Y H, Yu J H, Zhang K. Computational aesthetics and applications. Visual Computing for Industry, Biomedicine, and Art , 2018, 1(1): 6. DOI: 10.1186/s42492- 018-0006-1.
Zheng W, Li H Y, Xu H S, Sun M J. Chinese painting emotion classification based on convolution neural network and SVM. Journal of Nanjing Normal University (Natural Science Edition) , 2017, 40(3): 74–79, 86. DOI: 10.3969/j.issn.1001-4616.2017.03.011. (in Chinese)
Liu D S M, Cheng C I, Liu M L. Animating characters in Chinese painting using two-dimensional skeleton-based deformation. Multimedia Tools and Applications , 2020, 79(27): 20343–20371. DOI: 10.1007/s11042-020-08842-5.
Zhang S H, Chen T, Zhang Y F, Hu S M, Martin R. Video-based running water animation in Chinese painting style. Science in China Series F: Information Sciences , 2009, 52(2): 162–171. DOI: 10.1007/s11432-009-0035-7.
Ma W, Wang Y Z, Xu Y Q, Li Q, Ma X, Gao W. Annotating traditional Chinese paintings for immersive virtual exhibition. Journal on Computing and Cultural Heritage , 2012, 5(2): Article No. 6. DOI: 10.1145/2307723.2307725.
Jiang W, Wang X Y, Ren J C, Li S, Sun M J, Wang Z, Jin J S. MTFFNet: A multi-task feature fusion framework for Chinese painting classification. Cognitive Computation , 2021, 13(5): 1287–1296. DOI: 10.1007/s12559-021-09896-9.
Li J, Wang J Z. Studying digital imagery of ancient paintings by mixtures of stochastic models. IEEE Trans. Image Processing , 2004, 13(3): 340–353. DOI: 10.1109/TIP.2003.821349.
Sun M J, Zhang D, Wang Z, Ren J C, Jin J S. Monte Carlo Convex Hull model for classification of traditional Chinese paintings. Neurocomputing , 2016, 171: 788–797. DOI: 10.1016/j.neucom.2015.08.013.
Sheng J C. Automatic categorization of traditional Chinese paintings based on wavelet transform. Computer Science , 2014, 41(2): 317–319. DOI: 10.3969/j.issn.1002-137X.2014.02.069.
Sheng J C, Jiang J M. Recognition of Chinese artists via windowed and entropy balanced fusion in classification of their authored ink and wash paintings (IWPs). Pattern Recognition , 2014, 47(2): 612–622. DOI: 10.1016/j.patcog.2013.08.017.
Sheng J C, Jiang J M. Style-based classification of Chinese ink and wash paintings. Optical Engineering , 2013, 52(9): 093101. DOI: 10.1117/1.OE.52.9.093101.
Xu S H, Xu Y Q, Kang S B, Salesin D H, Pan Y H, Shum H Y. Animating Chinese paintings through stroke-based decomposition. ACM Trans. Graphics , 2006, 25(2): 239–267. DOI: 10.1145/1138450.1138454.
Yeh J W, Ouhyoung M. Non-photorealistic rendering in Chinese painting of animals. Journal of System Simulation , 2002, 14(6): 1220–1224.
Yu J H, Luo G M, Peng Q S. Image-based synthesis of Chinese landscape painting. Journal of Computer Science and Technology , 2003, 18(1): 22–28. DOI: 10.1007/BF02946647.
Way D L, Lin Y R, Shih Z C. The synthesis of trees in Chinese landscape painting using silhouette and texture strokes. Journal of WSCG , 2002, 10: 499–506.
Way D L, Shih Z C. The synthesis of rock textures in Chinese landscape painting. Computer Graphics Forum , 2001, 20(3): 123–131. DOI: 10.1111/1467-8659.00505.
Zhang Q, Sato Y, Takahashi J Y, Muraoka K, Chiba N. Simple cellular automaton-based simulation of ink behaviour and its application to Suibokuga-like 3D rendering of trees. The Journal of Visualization and Computer Animation , 1999, 10(1): 27–37. DOI: 3.0.CO;2-C">10.1002/(SICI)1099-1778(199901/03)10:1<27::AID-VIS194>3.0.CO;2-C.
Way D L, Lin W J, Shih Z C. Computer-generated Chinese color ink paintings. Journal of the Chinese Institute of Engineers , 2006, 29(6): 1041–1050. DOI: 10.1080/02533839.2006.9671203.
Chu N S H, Tai C L. MoXi: Real-time ink dispersion in absorbent paper. ACM Trans. Graphics , 2005, 24(3): 504–511. DOI: 10.1145/1073204.1073221.
Chu N S H, Tai C L. Real-time painting with an expressive virtual Chinese brush. IEEE Computer Graphics and Applications , 2004, 24(5): 76–85. DOI: 10.1109/MCG. 2004.37.
Mi X F, Tang M, Dong J X. Droplet: A virtual brush model to simulate Chinese calligraphy and painting. Journal of Computer Science and Technology , 2004, 19(3): 393–404. DOI: 10.1007/BF02944909.
Lee J. Diffusion rendering of black ink paintings using new paper and ink models. Computers & Graphics , 2001, 25(2): 295–308. DOI: 10.1016/S0097-8493(00)00132-1.
Strassmann S. Hairy brushes. ACM SIGGRAPH Computer Graphics , 1986, 20(4): 225–232. DOI: 10.1145/15886. 15911.
Bai B D, Zhang Y N, Wong K W, Li Y. Chinese hairy brush: A physically-based model for calligraphy. Chinese Journal of Electronics , 2009, 18(2): 302–306.
Xu S H, Lau C M F, Xu C F, Pan Y H. Virtual hairy brush for digital painting and calligraphy. Science in China Series F: Information Sciences , 2005, 48(3): 285–303. DOI: 10.1360/03yf0389.
Lee J. Simulating oriental black-ink painting. IEEE Computer Graphics and Applications , 1999, 19(3): 74–81. DOI: 10.1109/38.761553.
Jiang W, Wang Z, Jin J S, Han Y H, Sun M J. DCT-CNN-based classification method for the Gongbi and Xieyi techniques of Chinese ink-wash paintings. Neurocomputing , 2019, 330: 280–286. DOI: 10.1016/j.neucom.2018.11.003.
Yang L J, Xu T C, Du J X, Wu E H. Easy drawing: Generation of artistic Chinese flower painting by stroke-based stylization. IEEE Access , 2019, 7: 35449–35456. DOI: 10.1109/ACCESS.2019.2904669.
Liong S T, Huang Y C, Li S M, Huang Z K, Ma J Y, Gan Y S. Automatic traditional Chinese painting classification: A benchmarking analysis. Computational Intelligence , 2020, 36(3): 1183–1199. DOI: 10.1111/coin.12328.
Li D X, Zhang Y. Multi-instance learning algorithm based on LSTM for Chinese painting image classification. IEEE Access , 2020, 8: 179336–179345. DOI: 10.1109/ ACCESS.2020.3027982.
Chen J Z, Huang K Y, Feng Y C J, Zhang W, Tan S W, Chen W. Automatic poetry generation based on ancient Chinese paintings. Journal of Computer-Aided Design & Computer Graphics , 2021, 33(7): 1038–1044. DOI: 10.3724/SP.J.1089.2021.18633. (in Chinese)
Feng Y C J, Chen J Z, Huang K Y, Wong J K, Ye H, Zhang W, Zhu R C, Luo X N, Chen W. iPoet: Interactive painting poetry creation with visual multimodal analysis. Journal of Visualization , 2022, 25(3): 671–685. DOI: 10.1007/s12650-021-00780-0.
Shi W L. A generative approach to Chinese Shanshui painting. IEEE Computer Graphics and Applications , 2017, 37(1): 15–19. DOI: 10.1109/MCG.2017.13.
Lai Y C, Chen B A, Chen K W, Si W L, Yao C Y, Zhang E. Data-driven NPR illustrations of natural flows in Chinese painting. IEEE Trans. Visualization and Computer Graphics , 2017, 23(12): 2535–2549. DOI: 10.1109/TVCG.2016.2622269.
Guo F, Peng H, Tang J. A novel method of converting photograph into Chinese ink painting. IEEJ Trans. Electrical and Electronic Engineering , 2015, 10(3): 320–329. DOI: 10.1002/tee.22088.
Dong L X, Lu S F, Jin X G. Real-time image-based Chinese ink painting rendering. Multimedia tools and Applications , 2014, 69(3): 605–620. DOI: 10.1007/s11042-012-1126-9.
Wang C M, Wang R J. Image-based color ink diffusion rendering. IEEE Trans. Visualization and Computer Graphics , 2007, 13(2): 235–246. DOI: 10.1109/TVCG.2007. 41.
Zhan Y, Gao Y, Xie L Y. Aesthetic feature analysis and classification of Chinese traditional painting. Journal of Beijing University of Aeronautics and Astronautics , 2019, 45(12): 2514–2522. DOI: 10.13700/j.bh.1001-5965.2019.0375. (in Chinese)
Hung C C. A study on a content-based image retrieval technique for Chinese paintings. The Electronic Library , 2018, 36(1): 172–188. DOI: 10.1108/EL-10-2016-0219.
Xu S H, Tan H S, Jiao X T, Lau F C M, Pan Y H. A generic pigment model for digital painting. Computer Graphics Forum , 2007, 26(3): 609–618. DOI: 10.1111/j.1467-8659.2007.01084.x.
Jiang S Q, Huang Q M, Ye Q X, Gao W. An effective method to detect and categorize digitized traditional Chinese paintings. Pattern Recognition Letters , 2006, 27(7): 734–746. DOI: 10.1016/j.patrec.2005.10.017.
Guo F, Tang J, Peng H. Image recovery for ancient Chinese paintings. International Journal of Signal Processing, Image Processing and Pattern Recognition , 2013, 6(5): 165–178. DOI: 10.14257/ijsip.2013.6.5.15.
Pei S, Chiu Y. Background adjustment and saturation enhancement in ancient Chinese paintings. IEEE Trans. Image Processing , 2006, 15(10): 3230–3234. DOI: 10.1109/ TIP.2006.877478.
Pei S C, Zeng Y C, Chang C H. Virtual restoration of ancient Chinese paintings using color contrast enhancement and lacuna texture synthesis. IEEE Trans. Image Processing , 2004, 13(3): 416–429. DOI: 10.1109/TIP.2003. 821347.
Fan Z B, Zhang K, Zheng X S. Evaluation and analysis of white space in Wu Guanzhong’s Chinese paintings. Leonardo , 2019, 52(2): 111–116. DOI: 10.1162/LEON_a_ 01409.
Hsieh C K, Hung Y P, Ben-Ezra M, Hsieh H F. Viewing Chinese art on an interactive tabletop. IEEE Computer Graphics and Applications , 2013, 33(3): 16–21. DOI: 10.1109/MCG.2013.50.
Tang F, Dong W M, Meng Y P, Mei X, Huang F Y, Zhang X P, Deussen O. Animated construction of Chinese brush paintings. IEEE Trans. Visualization and Computer Graphics , 2018, 24(12): 3019–3031. DOI: 10.1109/TVCG.2017.2774292.
Yang L J, Xu T C. Animating Chinese ink painting through generating reproducible brush strokes. Science China Information Sciences , 2013, 56(1): 1–13. DOI: 10.1007/s11432-012-4740-2.
Xie N, Hachiya H, Sugiyama M. Artist agent: A reinforcement learning approach to automatic stroke generation in oriental ink painting. IEICE Trans. Information and Systems , 2013, E96.D(5): 1134–1144. DOI: 10.1587/transinf.E96.D.1134.