Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Humanity has fantasized about artificial intelligence tools able to discuss with human beings fluently for decades. Numerous efforts have been proposed ranging from ELIZA to the modern vocal assistants. Despite the large interest in this research and innovation field, there is a lack of common understanding on the concept of conversational agents and general over expectations that hide the current limitations of existing solutions. This work proposes a literature review on the subject with a focus on the most promising type of conversational agents that are powered on top of knowledge bases and that can offer the ground knowledge to hold conversation autonomously on different topics. We describe a conceptual architecture to define the knowledge-enhanced conversational agents and investigate different domains of applications. We conclude this work by listing some promising research pathways for future work.
Weizenbaum J. ELIZA—A computer program for the study of natural language communication between man and machine. Communications of the ACM, 1966, 9(1): 36–45. DOI: 10.1145/365153.365168.
Singhal K, Azizi S, Tu T et al. Large language models encode clinical knowledge. Nature, 2023, 620(7972): 172–180. DOI: 10.1038/s41586-023-06291-2.
Yang L F, Chen H Y, Li Z, Ding X, Wu X D. Give us the facts: Enhancing large language models with knowledge graphs for fact-aware language modeling. IEEE Trans. Knowledge and Data Engineering, 2024, 36(7): 3091–3110. DOI: 10.1109/TKDE.2024.3360454.
Syvänen S, Valentini C. Conversational agents in online organization–stakeholder interactions: A state-of-the-art analysis and implications for further research. Journal of Communication Management, 2020, 24(4): 339–362. DOI: 10.1108/JCOM-11-2019-0145.
Chen H S, Liu X R, Yin D W, Tang J L. A survey on dialogue systems: Recent advances and new frontiers. ACM SIGKDD Explorations Newsletter, 2017, 19(2): 25–35. DOI: 10.1145/3166054.3166058.
Huang M L, Zhu X Y, Gao J F. Challenges in building intelligent open-domain dialog systems. ACM Trans. Information Systems, 2020, 38(3): Article No. 21. DOI: 10.1145/3383123.
de Barcelos Silva A, Gomes M M, da Costa C A, da Rosa Righi R, Barbosa J L V, Pessin G, De Doncker G, Federizzi G. Intelligent personal assistants: A systematic literature review. Expert Systems with Applications, 2020, 147: 113193. DOI: 10.1016/j.eswa.2020.113193.
Ferrara E, Varol O, Davis C, Menczer F, Flammini A. The rise of social bots. Communications of the ACM, 2016, 59(7): 96–104. DOI: 10.1145/2818717.
Subrahmanian V S, Azaria A, Durst S, Kagan V, Galstyan A, Lerman K, Zhu L H, Ferrara E, Flammini A, Menczer F. The DARPA twitter bot challenge. Computer, 2016, 49(6): 38–46. DOI: 10.1109/MC.2016.183.
Sarikaya R. The technology behind personal digital assistants: An overview of the system architecture and key components. IEEE Signal Processing Magazine, 2017, 34(1): 67–81. DOI: 10.1109/MSP.2016.2617341.
Minsky M. Society of mind: A response to four reviews. Artificial Intelligence, 1991, 48(3): 371–396. DOI: 10.1016/ 0004-3702(91)90036-J.
Rohmatillah M, Chien J T. Advances and challenges in multi-domain task-oriented dialogue policy optimization. APSIPA Trans. Signal and Information Processing, 2023, 12(1): e37. DOI: 10.1561/116.00000132.
Richards B A, Lillicrap T P. Dendritic solutions to the credit assignment problem. Current Opinion in Neurobiology, 2019, 54: 28–36. DOI: 10.1016/j.conb.2018.08.003.
Chowdhery A, Narang S, Devlin J et al. PaLM: Scaling language modeling with pathways. The Journal of Machine Learning Research, 2022, 24(1): 240.
Yu W H, Zhu C G, Li Z T, Hu Z T, Wang Q Y, Ji H, Jiang M. A survey of knowledge-enhanced text generation. ACM Computing Surveys, 2022, 54(11s): 227. DOI: 10.1145/3512467.
Adamopoulou E, Moussiades L. Chatbots: History, technology, and applications. Machine Learning with Applications, 2020, 2: 100006. DOI: 10.1016/j.mlwa.2020.100006.
Ji S X, Pan S R, Cambria E, Marttinen P, Yu P S. A survey on knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks and Learning Systems, 2022, 33(2): 494–514. DOI: 10.1109/TNNLS.2021.3070843.
Wen J T, Jiang D Z, Tu G, Liu C, Cambria E. Dynamic interactive multiview memory network for emotion recognition in conversation. Information Fusion, 2023, 91: 123–133. DOI: 10.1016/j.inffus.2022.10.009.
Zhang Z, Takanobu R, Zhu Q, Huang M L, Zhu X Y. Recent advances and challenges in task-oriented dialog systems. Science China Technological Sciences, 2020, 63(10): 2011–2027. DOI: 10.1007/s11431-020-1692-3.
He H, Lu H, Bao S Q, Wang F, Wu H, Niu Z Y, Wang H F. Learning to select external knowledge with multi-scale negative sampling. IEEE/ACM Trans. Audio, Speech, and Language Processing, 2024, 32: 714–720. DOI: 10.1109/TASLP.2023.3301222.
Presti L L, Maggiore G, Marino V, Resciniti R. Mobile instant messaging apps as an opportunity for a conversational approach to marketing: A segmentation study. Journal of Business & Industrial Marketing, 2022, 37(7): 1432–1448. DOI: 10.1108/JBIM-02-2020-0121.
McLean G, Osei-Frimpong K. Examining satisfaction with the experience during a live chat service encounter-implications for website providers. Computers in Human Behavior, 2017, 76: 494–508. DOI: 10.1016/j.chb.2017.08.005.
Okonkwo C W, Ade-Ibijola A. Chatbots applications in education: A systematic review. Computers and Education: Artificial Intelligence, 2021, 2: 100033. DOI: 10.1016/ j.caeai.2021.100033.
Pradana A, Sing G O, Kumar Y J. SamBot-intelligent conversational bot for interactive marketing with consumer-centric approach. International Journal of Computer Information Systems and Industrial Management Applications, 2014, 6: 265–275.
Rutten L J F, Blake K D, Greenberg-Worisek A J, Allen S V, Moser R P, Hesse B W. Online health information seeking among us adults: Measuring progress toward a healthy people 2020 objective. Public Health Reports, 2019, 134(6): 617–625. DOI: 10.1177/0033354919874074.
Baker A, Perov Y, Middleton K, Baxter J, Mullarkey D, Sangar D, Butt M, DoRosario A, Johri S. A comparison of artificial intelligence and human doctors for the purpose of triage and diagnosis. Frontiers in Artificial Intelligence, 2020, 3: 543405. DOI: 10.3389/frai.2020.543405.
Wollny S, Schneider J, Di Mitri D, Weidlich J, Rittberger M, Drachsler H. Are we there yet?—A systematic literature review on chatbots in education. Frontiers in Artificial Intelligence, 2021, 4: 654924. DOI: 10.3389/frai.2021.654924.
Gibson E, Futrell R, Piantadosi S P, Dautriche I, Mahowald K, Bergen L, Levy R. How efficiency shapes human language. Trends in Cognitive Sciences, 2019, 23(5): 389–407. DOI: 10.1016/j.tics.2019.02.003.
Schrimpf M, Blank I A, Tuckute G et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(45): e2105646118. DOI: 10.1073/pnas.2105646118.
Feine J, Gnewuch U, Morana S, Maedche A. A taxonomy of social cues for conversational agents. International Journal of Human-Computer Studies, 2019, 132: 138–161. DOI: 10.1016/j.ijhcs.2019.07.009.
Mirzababaei B, Pammer-Schindler V. Developing a conversational agent’s capability to identify structural wrongness in arguments based on Toulmin’s model of arguments. Frontiers in Artificial Intelligence, 2021, 4: 645516. DOI: 10.3389/FRAI.2021.645516.
Motger Q, Franch X, Marco J. Software-based dialogue systems: Survey, taxonomy, and challenges. ACM Computing Surveys, 2022, 55(5): 91. DOI: 10.1145/3527450.
Laranjo L, Dunn A G, Tong H L et al. Conversational agents in healthcare: A systematic review. Journal of the American Medical Informatics Association, 2018, 25(9): 1248–1258. DOI: 10.1093/jamia/ocy072.