Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In a local search algorithm, one of its most important features is the definition of its neighborhood which is crucial to the algorithm’s performance. In this paper, we present an analysis of neighborhood combination search for solving the single-machine scheduling problem with sequence-dependent setup time with the objective of minimizing total weighted tardiness (SMSWT). First, We propose a new neighborhood structure named Block Swap (B1) which can be considered as an extension of the previously widely used Block Move (B2) neighborhood, and a fast incremental evaluation technique to enhance its evaluation efficiency. Second, based on the Block Swap and Block Move neighborhoods, we present two kinds of neighborhood structures: neighborhood union (denoted by B1
Lin S, Kernighan B W. An effective heuristic algorithm for the traveling-salesman problem. Operations Research , 1973, 21(2): 498–516. DOI: 10.1287/opre.21.2.498.
Peng B, Lü Z P, Cheng T C E. A tabu search/path relinking algorithm to solve the job shop scheduling problem. Computers & Operations Research , 2015, 53: 154–164. DOI: 10.1016/j.cor.2014.08.006.
Mladenović N, Hansen P. Variable neighborhood search. Computers & Operations Research , 1997, 24(11): 1097–1100. DOI: 10.1016/S0305-0548(97)00031-2.
Lü Z P, Hao J K, Glover F. Neighborhood analysis: A case study on curriculum-based course timetabling. Journal of Heuristics , 2011, 17(2): 97–118. DOI: 10.1007/s10732- 010-9128-0.
Xu H Y, Lü Z P, Cheng T C E. Iterated local search for single-machine scheduling with sequence-dependent setup times to minimize total weighted tardiness. Journal of Scheduling , 2014, 17(3): 271–287. DOI: 10.1007/s10951-013- 0351-z.
Xu H Y, Lü Z P, Yin A H, Shen L J, Buscher U. A study of hybrid evolutionary algorithms for single machine scheduling problem with sequence-dependent setup times. Computers & Operations Research , 2014, 50: 47–60. DOI: 10.1016/j.cor.2014.04.009.
González M, Palacios J J, Vela C R, Hernández-Arauzo A. Scatter search for minimizing weighted tardiness in a single machine scheduling with setups. Journal of Heuristics , 2017, 23(2/3): 81–110. DOI: 10.1007/s10732-017-9325-1.
González M A, Vela C R. An efficient memetic algorithm for total weighted tardiness minimization in a single machine with setups. Applied Soft Computing , 2015, 37: 506–518. DOI: 10.1016/j.asoc.2015.07.050.
Subramanian A, Farias K. Efficient local search limitation strategy for single machine total weighted tardiness scheduling with sequence-dependent setup times. Computers & Operations Research , 2017, 79: 190–206. DOI: 10.1016/j.cor.2016.10.008.
Chen C L. Iterated population-based VND algorithms for single-machine scheduling with sequence-dependent setup times. Soft Computing , 2019, 23(11): 3627–3641. DOI: 10.1007/s00500-018-3014-3.
Graham R L, Lawler E L, Lenstra J K, Kan A H G R. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics , 1979, 5: 287–326. DOI: 10.1016/s0167-5060(08)70356-x.
Tanaka S, Araki M. An exact algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times. Computers & Operations Research , 2013, 40(1): 344–352. DOI: 10.1016/j.cor.2012.07.004.
Tanaka S, Fujikuma S. A dynamic-programming-based exact algorithm for general single-machine scheduling with machine idle time. Journal of Scheduling , 2012, 15(3): 347–361. DOI: 10.1007/s10951-011-0242-0.
Abdul-Razaq T S, Potts C N, Van Wassenhove L N. A survey of algorithms for the single machine total weighted tardiness scheduling problem. Discrete Applied Mathematics , 1990, 26(2/3): 235–253. DOI: 10.1016/0166-218x(90)90103-j.
Potts C N, Van Wassenhove L N. A branch and bound algorithm for the total weighted tardiness problem. Operations Research , 1985, 33(2): 363–377. DOI: 10.1287/opre.33.2.363.
Potts C N, Van Wassenhove L N. Dynamic programming and decomposition approaches for the single machine total tardiness problem. European Journal of Operational Research , 1987, 32(3): 405–414. DOI: 10.1016/s0377-2217(87)80008-5.
Luo X C, Chu F. A branch and bound algorithm of the single machine schedule with sequence dependent setup times for minimizing total tardiness. Applied Mathematics and Computation , 2006, 183(1): 575–588. DOI: 10.1016/j.amc.2006.05.127.
Bigras L P, Gamache M, Savard G. The time-dependent traveling salesman problem and single machine scheduling problems with sequence dependent setup times. Discrete Optimization , 2008, 5(4): 685–699. DOI: 10.1016/j.disopt.2008.04.001.
Vepsalainen A P J, Morton T E. Priority rules for job shops with weighted tardiness costs. Management Science , 1987, 33(8): 1035–1047. DOI: 10.1287/mnsc.33.8.1035.
Lee Y H, Bhaskaran K, Pinedo M. A heuristic to minimize the total weighted tardiness with sequence-dependent setups. IIE Trans. , 1997, 29(1): 45–52. DOI: 10.1080/07408179708966311.
Tan K C, Narasimhan R. Minimizing tardiness on a single processor with sequence-dependent setup times: A simulated annealing approach. Omega , 1997, 25(6): 619–634. DOI: 10.1016/s0305-0483(97)00024-8.
Armentano V A, Mazzini R. A genetic algorithm for scheduling on a single machine with set-up times and due dates. Production Planning & Control , 2000, 11(7): 713–720. DOI: 10.1080/095372800432188.
França P M, Mendes A, Moscato P. A memetic algorithm for the total tardiness single machine scheduling problem. European Journal of Operational Research , 2001, 132(1): 224–242. DOI: 10.1016/s0377-2217(00)00140-5.
Liao C J, Juan H C. An ant colony optimization for single-machine tardiness scheduling with sequence-dependent setups. Computers & Operations Research , 2007, 34(7): 1899–1909. DOI: 10.1016/j.cor.2005.07.020.
Gupta S R, Smith J S. Algorithms for single machine total tardiness scheduling with sequence dependent setups. European Journal of Operational Research , 2006, 175(2): 722–739. DOI: 10.1016/j.ejor.2005.05.018.
Ying K C, Lin S W, Huang C Y. Sequencing single-machine tardiness problems with sequence dependent setup times using an iterated greedy heuristic. Expert Systems with Applications , 2009, 36(3): 7087–7092. DOI: 10.1016/j.eswa.2008.08.033.
Fatih Tasgetiren M, Liang Y C, Sevkli M, Gencyilmaz G. Particle swarm optimization and differential evolution for the single machine total weighted tardiness problem. International Journal of Production Research , 2006, 44(22): 4737–4754. DOI: 10.1080/00207540600620849.
Bilge Ü, Kurtulan M, Kıraç F. A tabu search algorithm for the single machine total weighted tardiness problem. European Journal of Operational Research , 2007, 176(3): 1423–1435. DOI: 10.1016/j.ejor.2005.10.030.
Chou F D. An experienced learning genetic algorithm to solve the single machine total weighted tardiness scheduling problem. Expert Systems with Applications , 2009, 36(2): 3857–3865. DOI: 10.1016/j.eswa.2008.02.040.
Wang X P, Tang L X. A population-based variable neighborhood search for the single machine total weighted tardiness problem. Computers & Operations Research , 2009, 36(6): 2105–2110. DOI: 10.1016/j.cor.2008.07.009.
Cicirello V A, Smith S F. Enhancing stochastic search performance by value-biased randomization of heuristics. Journal of Heuristics , 2005, 11(1): 5–34. DOI: 10.1007/s10732-005-6997-8.
Anghinolfi D, Paolucci M. A new ant colony optimization approach for the single machine total weighted tardiness scheduling problem. International Journal of Operations Research , 2008, 5(1): 44–60.
Lin S W, Ying K C. Solving single-machine total weighted tardiness problems with sequence-dependent setup times by meta-heuristics. The International Journal of Advanced Manufacturing Technology , 2007, 34(11/12): 1183–1190. DOI: 10.1007/s00170-006-0693-1.
Valente J M S, Alves R A F S. Beam search algorithms for the single machine total weighted tardiness scheduling problem with sequence-dependent setups. Computers & Operations Research , 2008, 35(7): 2388–2405. DOI: 10.1016/j.cor.2006.11.004.
Anghinolfi D, Paolucci M. A new discrete particle swarm optimization approach for the single-machine total weighted tardiness scheduling problem with sequence-dependent setup times. European Journal of Operational Research , 2009, 193(1): 73–85. DOI: 10.1016/j.ejor.2007.10. 044.
Tasgetiren M F, Pan Q K, Liang Y C. A discrete differential evolution algorithm for the single machine total weighted tardiness problem with sequence dependent setup times. Computers & Operations Research , 2009, 36(6): 1900–1915. DOI: 10.1016/j.cor.2008.06.007.
Kirlik G, Oguz C. A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine. Computers & Operations Research , 2012, 39(7): 1506–1520. DOI: 10.1016/j.cor.2011.08.022.
Subramanian A, Battarra M, Potts C N. An iterated local search heuristic for the single machine total weighted tardiness scheduling problem with sequence-dependent setup times. International Journal of Production Research , 2014, 52(9): 2729–2742. DOI: 10.1080/00207543.2014.883472.
Di Gaspero L, Schaerf A. Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms , 2006, 5(1): 65–89. DOI: 10.1007/s10852-005-9032-z.
Glover F, McMillan C, Glover R. A heuristic programming approach to the employee scheduling problem and some thoughts on “managerial robots”. Journal of Operations Management , 1984, 4(2): 113–128. DOI: 10.1016/0272-6963(84)90027-5.
Rubin P A, Ragatz G L. Scheduling in a sequence dependent setup environment with genetic search. Computers & Operations Research , 1995, 22(1): 85–99. DOI: 10.1016/0305-0548(93)e0021-k.
Gagné C, Price W L, Gravel M. Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. Journal of the Operational Research Society , 2002, 53(8): 895–906. DOI: 10.1057/palgrave.jors.2601390.