Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Offline handwritten formula recognition is a challenging task due to the variety of handwritten symbols and two-dimensional formula structures. Recently, the deep neural network recognizers based on the encoder-decoder framework have achieved great improvements on this task. However, the unsatisfactory recognition performance for formulas with long
Zhang J S, Du J, Zhang S L, Liu D, Hu Y L, Hu J S, Wei S, Dai L R. Watch, attend and parse: An end-to-end neural network based approach to handwritten mathematical expression recognition. Pattern Recognition , 2017, 71: 196–206. DOI: 10.1016/j.patcog.2017.06.017.
Wu J W, Yin F, Zhang Y M, Zhang X Y, Liu C L. Handwritten mathematical expression recognition via paired adversarial learning. Int. J. Comput. Vision , 2020, 128(10): 2386–2401. DOI: 10.1007/s11263-020-01291-5.
Awal A M, Mouchère H, Viard-Gaudin C. A global learning approach for an online handwritten mathematical expression recognition system. Pattern Recognit. Lett. , 2014, 35: 68–77. DOI: 10.1016/j.patrec.2012.10.024.
Álvaro F, Sánchez J A, Benedí J M. An integrated grammar-based approach for mathematical expression recognition. Pattern Recognit. , 2016, 51: 135–147. DOI: 10.1016/j.patcog.2015.09.013.
Le A D, Indurkhya B, Nakagawa M. Pattern generation strategies for improving recognition of handwritten mathematical expressions. Pattern Recognit. Lett. , 2019, 128: 255–262. DOI: 10.1016/j.patrec.2019.09.002.
Mouchère H, Zanibbi R, Garain U, Viard-Gaudin C. Advancing the state of the art for handwritten math recognition: The CROHME competitions, 2011-2014. Int. J. Document Anal. Recognit. , 2016, 19(2): 173–189. DOI: 10.1007/s10032-016-0263-5.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. , 1997, 9(8): 1735–1780. DOI: 10.1162/neco. 1997.9.8.1735.
Zhang J S, Du J, Dai L R. Track, Attend, and Parse (TAP): An end-to-end framework for online handwritten mathematical expression recognition. IEEE Trans. Multimedia , 2019, 21(1): 221–233. DOI: 10.1109/TMM.2018.2844 689.
Marti U V, Bunke H. The IAM-database: An English sentence database for offline handwriting recognition. Int. J. Document Anal. Recognit. , 2002, 5(1): 39–46. DOI: 10.1007/ s100320200071.