Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The success of immune checkpoint blockade has reaffirmed the importance of the immune system in cancer treatment. Immunotherapy enables the body's own immune system to fight tumor cells. However, the complex tumor microenvironment and its interaction with the immune system remain a mystery. The efficacy of immunotherapy is often affected by tumor heterogeneity. Molecular imaging techniques, such as single photon emission computed tomography and positron emission tomography, enable noninvasive whole‐body imaging of tumor and immune cell signatures. Noninvasive molecular imaging can also be used to monitor the treatment response of tumors, thereby achieving personalized response assessment, which may ultimately lead to improved clinical management, development of individualized treatments, and reliable prognosis. This article reviews recent research in immunotherapy response assessment, immune T‐cell imaging, immune checkpoint imaging, and radiomics/radiogenomics in immunotherapy. To date, these studies have primarily comprised exploratory preclinical imaging with preliminary results indicating that biomarker molecular imaging may have a role to play in the assessment of immunotherapy. Therefore, the principle of selecting patients for immunotherapy based on imaging results is feasible.
Couzin‐Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science. 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432
Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. https://doi.org/10.1056/NEJMoa1414428
Gettinger S, Rizvi NA, Chow LQ, Borghaei H, Brahmer J, Ready N, et al. Nivolumab monotherapy for first‐line treatment of advanced non‐small‐cell lung cancer. J Clin Oncol. 2016;34(25):2980–7. https://doi.org/10.1200/JCO.2016.66.9929
Motzer RJ, Tannir NM, McDermott DF, Aren Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal‐cell carcinoma. N Engl J Med. 2018;378(14):1277–90. https://doi.org/10.1056/NEJMoa1712126
Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA A Cancer J Clin. 2017;67(1):65–85. https://doi.org/10.3322/caac.21358
Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability‐high solid tumors. Clin Cancer Res. 2019;25(13):3753–8. https://doi.org/10.1158/1078-0432.CCR-18-4070
McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9. https://doi.org/10.1126/science.aaf1490
Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, et al. Differential Activity of Nivolumab, Pembrolizumab and MPDL3280A according to the Tumor Expression of Programmed Death‐Ligand‐1 (PD‐L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10(6):e0130142. https://doi.org/10.1371/journal.pone.0130142
Mansfield AS, Murphy SJ, Peikert T, Yi ES, Vasmatzis G, Wigle DA, et al. Heterogeneity of programmed cell death ligand 1 expression in multifocal lung cancer. Clin Cancer Res. 2016;22(9):2177–82. https://doi.org/10.1158/1078-0432.CCR-15-2246
Fruhwirth GO, Kneilling M, de Vries IJM, Weigelin B, Srinivas M, Aarntzen EHJG. The potential of in vivo imaging for optimization of molecular and cellular anti‐cancer immunotherapies. Mol Imag Biol. 2018;20(5):696–704. https://doi.org/10.1007/s11307-018-1254-3
Eisenhauer EA, Therasse P, Bogaerts J, Schwartz L, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47. https://doi.org/10.1016/j.ejca.2008.10.026
Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14. https://doi.org/10.1002/1097-0142(19810101)47:1<207::aid-cncr2820470134>3.0.co;2-6
Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16. https://doi.org/10.1093/jnci/92.3.205
Nishino M, Jagannathan JP, Ramaiya NH, Van den Abbeele AD. Revised RECIST guideline version 1.1: what oncologists want to know and what radiologists need to know. AJR Am J Roentgenol. 2010;195(2):281–9. https://doi.org/10.2214/AJR.09.4110
Cheson BD, Ansell S, Schwartz L, Gordon LI, Advani R, Jacene HA, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128(21):2489–96. https://doi.org/10.1182/blood-2016-05-718528
Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18(3):e143–52. https://doi.org/10.1016/S1470-2045(17)30074-8
Evangelista L, Cuppari L, Menis J, Bonanno L, Reccia P, Frega S, et al. 18F‐FDG PET/CT in non‐small‐cell lung cancer patients: a potential predictive biomarker of response to immunotherapy. Nucl Med Commun. 2019;40(8):802–7. https://doi.org/10.1097/MNM.0000000000001025
Seban RD, Moya‐Plana A, Antonios L, Yeh R, Marabelle A, Deutsch E, et al. Prognostic 18F‐FDG PET biomarkers in metastatic mucosal and cutaneous melanoma treated with immune checkpoint inhibitors targeting PD‐1 and CTLA‐4. Eur J Nucl Med Mol Imag. 2020;47(10):2301–12. https://doi.org/10.1007/s00259-020-04757-3
Sachpekidis C, Kopp‐Schneider A, Hakim‐Meibodi L, Dimitrakopoulou‐Strauss A, Hassel JC. 18F‐FDG PET/CT longitudinal studies in patients with advanced metastatic melanoma for response evaluation of combination treatment with vemurafenib and ipilimumab. Melanoma Res. 2019;29(2):178–86. https://doi.org/10.1097/CMR.0000000000000541
Annovazzi A, Vari S, Giannarelli D, Pasqualoni R, Sciuto R, Carpano S, et al. Comparison of 18F‐FDG PET/CT criteria for the prediction of therapy response and clinical outcome in patients with metastatic melanoma treated with ipilimumab and PD‐1 inhibitors. Clin Nucl Med. 2020;45(3):187–94. https://doi.org/10.1097/RLU.0000000000002921
Ito K, Teng R, Schöder H, Humm JL, Ni A, Michaud L, et al. 18F‐FDG PET/CT for monitoring of ipilimumab therapy in patients with metastatic melanoma. J Nucl Med. 2019;60(3):335–41. https://doi.org/10.2967/jnumed.118.213652
Chen A, Mokrane FZ, Schwartz LH, Morschhauser F, Stamatoullas A, Schiano de Colella JM, et al. Early 18F‐FDG PET/CT response predicts survival in relapsed or refractory Hodgkin lymphoma treated with nivolumab. J Nucl Med. 2020;61(5):649–54. https://doi.org/10.2967/jnumed.119.232827
Tao X, Li N, Wu N, He J, Ying J, Gao S, et al. The efficiency of 18F‐FDG PET‐CT for predicting the major pathologic response to the neoadjuvant PD‐1 blockade in resectable non‐small cell lung cancer. Eur J Nucl Med Mol Imag. 2020;47(5):1209–19. https://doi.org/10.1007/s00259-020-04711-3
Sachpekidis C, Kopp‐Schneider A, Pan L, Papamichail D, Haberkorn U, Hassel JC, et al. Interim [18F] FDG PET/CT can predict response to anti‐PD‐1 treatment in metastatic melanoma. Eur J Nucl Med Mol Imag. 2020;48(6):1932–1943. https://doi.org/10.1007/s00259-020-05137-7
Cho SY, Lipson EJ, Im HJ, Rowe SP, Gonzalez EM, Blackford A, et al. Prediction of response to immune checkpoint inhibitor therapy using early‐time‐point 18F‐FDG PET/CT imaging in patients with advanced melanoma. J Nucl Med. 2017;58(9):1421–8. https://doi.org/10.2967/jnumed.116.188839
Wang J, Hu Y, Yang S, Wei G, Zhao X, Wu W, et al. Role of fluorodeoxyglucose positron emission tomography/computed tomography in predicting the adverse effects of chimeric antigen receptor T cell therapy in patients with non‐Hodgkin lymphoma. Biol Blood Marrow Transplant. 2019;25(6):1092–8. https://doi.org/10.1016/j.bbmt.2019.02.008
Anwar H, Sachpekidis C, Winkler J, Kopp‐Schneider A, Haberkorn U, Hassel JC, et al. Absolute number of new lesions on 18F‐FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur J Nucl Med Mol Imag. 2018;45(3):376–83. https://doi.org/10.1007/s00259-017-3870-6
Ohashi T, Terasawa K, Aoki M, Akazawa T, Shibata H, Kuze B, et al. The importance of FDG‐PET/CT parameters for the assessment of the immune status in advanced HNSCC. Auris Nasus Larynx. 2020;47(4):658–67. https://doi.org/10.1016/j.anl.2020.01.002
Wang Y, Zhao N, Wu Z, Pan N, Shen X, Liu T, et al. New insight on the correlation of metabolic status on 18F‐FDG PET/CT with immune marker expression in patients with non‐small cell lung cancer. Eur J Nucl Med Mol Imag. 2020;47(5):1127–36. https://doi.org/10.1007/s00259-019-04500-7
Togo M, Yokobori T, Shimizu K, Handa T, Kaira K, Sano T, et al. Diagnostic value of 18F‐FDG‐PET to predict the tumour immune status defined by tumoural PD‐L1 and CD8+tumour‐infiltrating lymphocytes in oral squamous cell carcinoma. Br J Cancer. 2020;122(11):1686–94. https://doi.org/10.1038/s41416-020-0820-z
Chen DS, Mellman I. Oncology meets immunology: the cancer‐immunity cycle. Immunity. 2013;39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012
Chen DS, Mellman I. Elements of cancer immunity and the cancer‐immune set point. Nature. 2017;541(7637):321–30. https://doi.org/10.1038/nature21349
Alam IS, Mayer AT, Sagiv‐Barfi I, Wang K, Vermesh O, Czerwinski DK, et al. Imaging activated T cells predicts response to cancer vaccines. J Clin Invest. 2018;128(6):2569–80. https://doi.org/10.1172/JCI98509
Xiao Z, Mayer AT, Nobashi TW, Gambhir SS. ICOS is an indicator of T‐cell‐mediated response to cancer immunotherapy. Cancer Res. 2020;80(14):3023–32. https://doi.org/10.1158/0008-5472.CAN-19-3265
Larimer BM, Wehrenberg‐Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti‐CTLA‐4 therapy. J Nucl Med. 2016;57(10):1607–11. https://doi.org/10.2967/jnumed.116.173930
Hartimath SV, Draghiciu O, van de Wall S, Manuelli V, Dierckx RAJO, Nijman HW, et al. Noninvasive monitoring of cancer therapy induced activated T cells using [18F] FB‐IL‐2 PET imaging. OncoImmunology. 2016;6(1):e1248014. https://doi.org/10.1080/2162402X.2016.1248014
Tavaré R, Escuin‐Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno‐PET imaging method to monitor CD8‐dependent responses to immunotherapy. Cancer Res. 2016;76(1):73–82. https://doi.org/10.1158/0008-5472.CAN-15-1707
Farwell MD, Gamache RF, Babazada H, Hellmann MD, Harding JJ, Korn R, et al. CD8‐targeted PET imaging of tumor infiltrating T cells in patients with cancer: a phase I first‐in‐human study of 89Zr‐Df‐IAB22M2C, a radiolabeled anti‐CD8 minibody. J Nucl Med. 2021:jnumed.121.262485. https://doi.org/10.2967/jnumed.121.262485
Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA‐4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med. 2017;214(8):2243–55. https://doi.org/10.1084/jem.20161950
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T‐cell response. Nat Rev Immunol. 2005;5(11):844–52. https://doi.org/10.1038/nri1710
Bading JR, Shields AF. Imaging of cell proliferation: status and prospects. J Nucl Med. 2008;49(Suppl 2):64S–80S. https://doi.org/10.2967/jnumed.107.046391
Levi J, Lam T, Goth SR, Yaghoubi S, Bates J, Ren G, et al. Imaging of activated T cells as an early predictor of immune response to anti‐PD‐1 therapy. Cancer Res. 2019;79(13):3455–65. https://doi.org/10.1158/0008-5472.CAN-19-0267
Radu CG, Shu CJ, Nair‐Gill E, Shelly SM, Barrio JR, Satyamurthy N, et al. Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]‐labeled 2'‐deoxycytidine analog. Nat Med. 2008;14(7):783–8. https://doi.org/10.1038/nm1724
Antonios JP, Soto H, Everson RG, Moughon DL, Wang AC, Orpilla J, et al. Detection of immune responses after immunotherapy in glioblastoma using PET and MRI. Proc Natl Acad Sci U S A. 2017;114(38):10220–5. https://doi.org/10.1073/pnas.1706689114
Yeh R, Trager MH, Rizk EM, Finkel GG, Barker LW, Carvajal RD, et al. FLT‐PET at 6 weeks predicts response assessed by CT at 12 weeks in melanoma patients treated with pembrolizumab. Clin Nucl Med. 2020;45(4):267–75. https://doi.org/10.1097/RLU.0000000000002967
Haris M, Singh A, Mohammed I, Ittyerah R, Nath K, Nanga RP, et al. In vivo magnetic resonance imaging of tumor protease activity. Sci Rep. 2014;4(1):6081. https://doi.org/10.1038/srep06081
Haris M, Nanga RP, Singh A, Cai K, Kogan F, Hariharan H, et al Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed. 2012;25(11):1305–9. https://doi.org/10.1002/nbm.2792
Walker‐Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat Med. 2013;19(8):1067–72. https://doi.org/10.1038/nm.3252
Haris M, Cai K, Singh A, Hariharan H, Reddy R. In vivo mapping of brain myo‐inositol. Neuroimage. 2011;54(3):2079–85. https://doi.org/10.1016/j.neuroimage.2010.10.017
DeBrosse C, Nanga RP, Bagga P, Nath K, Haris M, Marincola F, et al. Lactate chemical exchange saturation transfer (LATEST) imaging in vivo ‐ a biomarker for LDH activity. Sci Rep. 2016;6(1):19517. https://doi.org/10.1038/srep19517
Singh A, Haris M, Cai K, Kassey VB, Kogan F, Reddy D, et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med. 2012;68(2):588–94. https://doi.org/10.1002/mrm.23250
Kang H, Shamim M, Yin X, Adluru E, Fukuda T, Yokomizo S, et al Tumor‐associated immune‐cell‐mediated tumor‐targeting mechanism with NIR‐Ⅱ fluorescence imaging. Adv Mater. 2022;34(8):e2106500. https://doi.org/10.1002/adma.202106500
Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD‐1 pathway in the immune response. Am J Transplant. 2012;12(10):2575–87. https://doi.org/10.1111/j.1600-6143.2012.04224.x
Ostrand‐Rosenberg S, Horn LA, Haile ST. The programmed death‐1 immune‐suppressive pathway: barrier to antitumor immunity. J Immunol. 2014;193(8):3835–41. https://doi.org/10.4049/jimmunol.1401572
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018;359(6382):1350–5. https://doi.org/10.1126/science.aar4060
Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018;8(9):1069–86. https://doi.org/10.1158/2159-8290.CD-18-0367
Vilain RE, Menzies AM, Wilmott JS, Kakavand H, Madore J, Guminski A, et al. Dynamic changes in PD‐L1 expression and immune infiltrates early during treatment predict response to PD‐1 blockade in melanoma. Clin Cancer Res. 2017;23(17):5024–33. https://doi.org/10.1158/1078-0432.CCR-16-0698
Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor‐associated B7‐H1 promotes T‐cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. https://doi.org/10.1038/nm730
Kondo A, Yamashita T, Tamura H, Zhao W, Tsuji T, Shimizu M, et al. Interferon‐gamma and tumor necrosis factor‐alpha induce an immunoinhibitory molecule, B7‐H1, via nuclear factor‐kappaB activation in blasts in myelodysplastic syndromes. Blood. 2010;116(7):1124–31. https://doi.org/10.1182/blood-2009-12-255125
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti‐PD‐L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95. https://doi.org/10.1172/JCI67313
Heskamp S, Hobo W, Molkenboer‐Kuenen JD, Olive D, Oyen WJ, Dolstra H, et al. Noninvasive imaging of tumor PD‐L1 expression using radiolabeled anti‐PD‐L1 antibodies. Cancer Res. 2015;75(14):2928–36. https://doi.org/10.1158/0008-5472.CAN-14-3477
Wen X, Shi C, Zhao L, Yao L, Xu D, Lin X, et al. Immuno‐SPECT/PET imaging with radioiodinated anti‐PD‐L1 antibody to evaluate PD‐L1 expression in immune‐competent murine models and PDX model of lung adenocarcinoma. Nucl Med Biol. 2020;86‐87:44–51. https://doi.org/10.1016/j.nucmedbio.2020.05.006
Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, et al. Imaging, biodistribution, and dosimetry of radionuclide‐labeled PD‐L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res. 2016;76(2):472–9. https://doi.org/10.1158/0008-5472.CAN-15-2141
Chatterjee S, Lesniak WG, Gabrielson M, Lisok A, Wharram B, Sysa‐Shah P, et al. A humanized antibody for imaging immune checkpoint ligand PD‐L1 expression in tumors. Oncotarget. 2016;7(9):10215–27. https://doi.org/10.18632/oncotarget.7143
Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, et al. PD‐L1 detection in tumors using [(64)Cu] atezolizumab with PET. Bioconjugate Chem. 2016;27(9):2103–10. https://doi.org/10.1021/acs.bioconjchem.6b00348
Jagoda EM, Vasalatiy O, Basuli F, Opina ACL, Williams MR, Wong K, et al. Immuno‐PET imaging of the programmed cell death‐1 Ligand (PD‐L1) using a zirconium‐89 labeled therapeutic antibody. Avelumab Mol Imag. 2019;18:1536012119829986. https://doi.org/10.1177/1536012119829986
Christensen C, Kristensen LK, Alfsen MZ, Nielsen CH, Kjaer A. Quantitative PET imaging of PD‐L1 expression in xenograft and syngeneic tumour models using a site‐specifically labelled PD‐L1 antibody. Eur J Nucl Med Mol Imag. 2020;47(5):1302–13. https://doi.org/10.1007/s00259-019-04646-4
Truillet C, Oh HLJ, Yeo SP, Lee CY, Huynh LT, Wei J, et al. Imaging PD‐L1 expression with ImmunoPET. Bioconjugate Chem. 2018;29(1):96–103. https://doi.org/10.1021/acs.bioconjchem.7b00631
Moroz A, Lee CY, Wang YH, Hsiao JC, Sevillano N, Truillet C, et al. A preclinical assessment of 89Zr‐atezolizumab identifies a requirement for carrier added formulations not observed with 89Zr‐C4. Bioconjugate Chem. 2018;29(10):3476–82. https://doi.org/10.1021/acs.bioconjchem.8b00632
Gao H, Wu Y, Shi J, Zhang X, Liu T, Hu B, et al. Nuclear imaging‐guided PD‐L1 blockade therapy increases effectiveness of cancer immunotherapy. J Immunother Cancer. 2020;8(2):e001156. https://doi.org/10.1136/jitc-2020-001156
Lv G, Sun X, Qiu L, Sun Y, Li K, Liu Q, et al. PET imaging of tumor PD‐L1 expression with a highly specific nonblocking single‐domain antibody. J Nucl Med. 2020;61(1):117–22. https://doi.org/10.2967/jnumed.119.226712
González Trotter DE, Meng X, McQuade P, Rubins D, Klimas M, Zeng Z, et al. In vivo imaging of the programmed death ligand 1 by 18F PET. J Nucl Med. 2017;58(11):1852–7. https://doi.org/10.2967/jnumed.117.191718
Chatterjee S, Lesniak WG, Miller MS, Lisok A, Sikorska E, Wharram B, et al. Rapid PD‐L1 detection in tumors with PET using a highly specific peptide. Biochem Biophys Res Commun. 2017;483(1):258–63. https://doi.org/10.1016/j.bbrc.2016.12.156
Donnelly DJ, Smith RA, Morin P, Lipovsek D, Gokemeijer J, Cohen D, et al. Synthesis and biologic evaluation of a novel 18F‐labeled adnectin as a PET radioligand for imaging PD‐L1 expression. J Nucl Med. 2018;59(3):529–35. https://doi.org/10.2967/jnumed.117.199596
Hettich M, Braun F, Bartholomä MD, Schirmbeck R, Niedermann G. High‐resolution PET imaging with therapeutic antibody‐based PD‐1/PD‐L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40. eCollection 2016. https://doi.org/10.7150/thno.15253
Wu AM. Engineered antibodies for molecular imaging of cancer. Methods. 2014;65(1):139–47. https://doi.org/10.1016/j.ymeth.2013.09.015
Maute RL, Gordon SR, Mayer AT, McCracken MN, Natarajan A, Ring NG, et al. Engineering high‐affinity PD‐1 variants for optimized immunotherapy and immuno‐PET imaging. Proc Natl Acad Sci U S A. 2015;112(47):E6506‐14. https://doi.org/10.1073/pnas.1519623112
Cole EL, Kim J, Donnelly DJ, Smith RA, Cohen D, Lafont V, et al. Radiosynthesis and preclinical PET evaluation of 89Zr‐nivolumab (BMS‐936558) in healthy non‐human primates. Bioorg Med Chem. 2017;25(20):5407–14. https://doi.org/10.1016/j.bmc.2017.07.066
Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, et al. Whole body PD‐1 and PD‐L1 positron emission tomography in patients with non‐small‐cell lung cancer. Nat Commun. 2018;9(1):4664. https://doi.org/10.1038/s41467-018-07131-y
Bensch F, van der Veen EL, Lub‐de Hooge MN, Jorritsma‐Smit A, Boellaard R, Kok IC, et al. 89Zr‐atezolizumab imaging as a noninvasive approach to assess clinical response to PD‐L1 blockade in cancer. Nat Med. 2018;24(12):1852–8. https://doi.org/10.1038/s41591-018-0255-8
Xing Y, Chand G, Liu C, Cook GJ, O’Doherty J, Zhao L, et al. Early phase I study of a 99mTc‐labeled anti‐programmed death ligand‐1 (PD‐L1) single‐domain antibody in SPECT/CT assessment of PD‐L1 expression in non‐small cell lung cancer. J Nucl Med. 2019;60(9):1213–20. https://doi.org/10.2967/jnumed.118.224170
Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD‐1 expression by tumour‐associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. https://doi.org/10.1038/nature22396
Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS. Novel radiotracer for immunoPET imaging of PD‐1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjugate Chem. 2015;26(10):2062–9. https://doi.org/10.1021/acs.bioconjchem.5b00318
England CG, Jiang D, Ehlerding EB, Rekoske BT, Ellison PA, Hernandez R, et al. 89Zr‐labeled nivolumab for imaging of T‐cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imag. 2018;45(1):110–20. https://doi.org/10.1007/s00259-017-3803-4
Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS. Development of novel immunoPET tracers to image human PD‐1 checkpoint expression on tumor‐infiltrating lymphocytes in a humanized mouse model. Mol Imag Biol. 2017;19(6):903–14. https://doi.org/10.1007/s11307-017-1060-3
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA‐4: from mechanism to autoimmune therapy. Int Immunopharm. 2020;80:106221. https://doi.org/10.1016/j.intimp.2020.106221
Contardi E, Palmisano GL, Tazzari PL, Martelli AM, Fala F, Fabbi M, et al. CTLA‐4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer. 2005;117(4):538–50. https://doi.org/10.1002/ijc.21155
Ribas A, Hanson DC, Noe DA, Millham R, Guyot DJ, Bernstein SH, et al. Tremelimumab (CP‐675,206), a cytotoxic T lymphocyte associated antigen 4 blocking monoclonal antibody in clinical development for patients with cancer. Oncologist. 2007;12(7):873–83. https://doi.org/10.1634/theoncologist.12-7-873
Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, et al. 64Cu‐DOTA‐anti‐CTLA‐4 mAb enabled PET visualization of CTLA‐4 on the T‐cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866. https://doi.org/10.1371/journal.pone.0109866
Ehlerding EB, England CG, Majewski RL, Valdovinos HF, Jiang D, Liu G, et al. ImmunoPET imaging of CTLA‐4 expression in mouse models of non‐small cell lung cancer. Mol Pharm. 2017;14(5):1782–9. https://doi.org/10.1021/acs.molpharmaceut.7b00056
Ehlerding EB, Lee HJ, Jiang D, Ferreira CA, Zahm CD, Huang P, et al. Antibody and fragment‐based PET imaging of CTLA‐4+ T‐cells in humanized mouse models. Am J Cancer Res. 2019;9(1):53–63.
Bellesoeur A, Torossian N, Amigorena S, Romano E. Advances in theranostic biomarkers for tumor immunotherapy. Curr Opin Chem Biol. 2020;56:79–90. https://doi.org/10.1016/j.cbpa.2020.02.005
Obermeyer Z, Emanuel EJ. Predicting the future ‐ big data, machine learning, and clinical medicine. N Engl J Med. 2016;375(13):1216–9. https://doi.org/10.1056/NEJMp1606181
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, et al. A radiomics approach to assess tumour‐infiltrating CD8 cells and response to anti‐PD‐1 or anti‐PD‐L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91. https://doi.org/10.1016/S1470-2045(18)30413-3
Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cǎlin A, Delli Pizzi A, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol. 2019;30(6):998–1004. https://doi.org/10.1093/annonc/mdz108
Kather JN, Pearson AT, Halama N, Jager D, Krause J, Loosen SH, et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med. 2019;25(7):1054–6. https://doi.org/10.1038/s41591-019-0462-y
Kulkarni PM, Robinson EJ, Sarin Pradhan J, Gartrell‐Corrado RD, Rohr BR, Trager MH, et al. Deep learning based on standard H&E images of primary melanoma tumors identifies patients at risk for visceral recurrence and death. Clin Cancer Res. 2020;26(5):1126–34. https://doi.org/10.1158/1078-0432.CCR-19-1495
Park C, Na KJ, Choi H, Ock CY, Ha S, Kim M, et al. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Theranostics. 2020;10(23):10838–48. https://doi.org/10.7150/thno.50283
Ninatti G, Kirienko M, Neri E, Sollini M, Chiti A. Imaging‐based prediction of molecular therapy targets in NSCLC by radiogenomics and AI approaches: a systematic review. Diagnostics. 2020;10(6):359. https://doi.org/10.3390/diagnostics10060359
Beig N, Patel J, Prasanna P, Hill V, Gupta A, Correa R, et al. Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma. Sci Rep. 2018;8(1):7. https://doi.org/10.1038/s41598-017-18310-0
Singh G, Manjila S, Sakla N, True A, Wardeh AH, Beig N, et al. Radiomics and radiogenomics in gliomas: a contemporary update. Br J Cancer. 2021;125(5):641–57. https://doi.org/10.1038/s41416-021-01387-w
García‐Figueiras R, Baleato‐González S, Luna A, Munoz‐Iglesias J, Oleaga L, Vallejo Casas JA, et al. Assessing immunotherapy with functional and molecular imaging and radiomics. Radiographics. 2020;40(7):1987–2010. https://doi.org/10.1148/rg.2020200070
Lao J, Chen Y, Li ZC, Li Q, Zhang J, Liu J, et al. A deep learning‐based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep. 2017;7(1):10353. https://doi.org/10.1038/s41598-017-10649-8
Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non‐response. Signal Transduct Targeted Ther. 2022;7(1):331. https://doi.org/10.1038/s41392-022-01136-2
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.