AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home iLABMED Article
PDF (431.9 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Overview of the epidemic characteristics of Mycoplasma pneumoniae infection around COVID pandemic

Hongmei Sun1Li Xiao2 ( )
Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
Show Author Information

Graphical Abstract

Mycoplasma pneumoniae (M. pneumoniae) is a cell wall‐less respiratory pathogen causing community‐acquired pneumonia and extrapulmonary manifestations. It is transmitted through close contact and shows periodic regional outbreaks. Mp has two major clonal lineages (P1‐1 and P1‐2) and herd immunity switches are thought to be responsible for the subtype shifting every 8–10 years. Extensive usage of macrolides for M. pneumoniae infection treatment caused increased macrolide resistance in M. pneumoniae. The coronavirus disease (COVID‐19) pandemic interfered with the global spread of M. pneumoniae and herd immunity against M. pneumoniae diminished. A large‐scale post COVID outbreak is currently ongoing in China and other regions of the world. To help physicians better understand and manage this epidemic, we provide this review summarizing current knowledge on the pathogenesis, epidemic characteristics, macrolide resistance, diagnostic methods, and clinical treatment strategies for this pathogen. Image was drawn by Figdraw (https://www.figdraw.com).

Abstract

Mycoplasma pneumoniae (M. pneumoniae) is a cell wall‐less respiratory pathogen causing community‐acquired pneumonia and extrapulmonary manifestations. It is transmitted through close contact and shows periodic regional outbreaks. The coronavirus disease (COVID‐19) pandemic interfered with the global spread of M. pneumoniae. A large‐scale post‐COVID outbreak is currently ongoing in China. To help physicians better understand and manage this epidemic, we provide this review summarizing current knowledge on the pathogenesis, epidemic characteristics, macrolide resistance, diagnostic methods, and clinical treatment strategies for this pathogen.

References

[1]

Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697–728. https://doi.org/10.1128/CMR.17.4.697-728.2004

[2]

Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH, et al. Impact of genome reduction on bacterial metabolism and its regulation. Science. 2009;326(5957):1263–8. https://doi.org/10.1126/science.1177263

[3]

Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev. 2017;30(3):747–809. https://doi.org/10.1128/CMR.00114-16

[4]

Kannan TR, Baseman JB. ADP‐ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci U S A. 2006;103(17):6724–9. https://doi.org/10.1073/pnas.0510644103

[5]

Hames C, Halbedel S, Hoppert M, Frey J, Stülke J. Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol. 2009;191(3):747–53. https://doi.org/10.1128/JB.01103-08

[6]

Großhennig S, Ischebeck T, Gibhardt J, Busse J, Feussner I, Stülke J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol. 2016;100(1):42–54. https://doi.org/10.1111/mmi.13300

[7]

Gan T, Yu J, He J. miRNA, lncRNA and circRNA: targeted molecules with therapeutic promises in Mycoplasma pneumoniae infection. Arch Microbiol. 2023;205(8):293. https://doi.org/10.1007/s00203-023-03636-3

[8]

Dumke R, Schurwanz N, Jacobs E. Characterisation of subtype‐ and variant‐specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae. Int J Med Microbiol. 2008;298(5–6):483–91. https://doi.org/10.1016/j.ijmm.2007.06.002

[9]

Yamamoto T, Kida Y, Sakamoto Y, Kuwano K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell Microbiol. 2017;19(3): e12666. https://doi.org/10.1111/cmi.12666

[10]

Chen LS, Li C, You XX, Lin YW, Wu YM. The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. Int J Med Microbiol. 2018;308(7):776–83. https://doi.org/10.1016/j.ijmm.2018.04.006

[11]

Yu Y, Wang J, Han R, Wang L, Zhang L, Zhang AY, et al. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF‐Tu). Virulence. 2020;11(1):1059–74. https://doi.org/10.1080/21505594.2020.1806664

[12]

Blötz C, Singh N, Dumke R, Stülke J. Characterization of an immunoglobulin binding protein (IbpM) from Mycoplasma pneumoniae. Front Microbiol. 2020;11:685. https://doi.org/10.3389/fmicb.2020.00685

[13]

Dallo SF, Baseman JB. Intracellular DNA replication and long‐term survival of pathogenic mycoplasmas. Microb Pathog. 2000;29(5):301–9. https://doi.org/10.1006/mpat.2000.0395

[14]

Simmons WL, Daubenspeck JM, Osborne JD, Balish MF, Waites KB, Dybvig K. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. Microbiology. 2013;159(Pt 4):737–47. https://doi.org/10.1099/mic.0.064782-0

[15]

Yan C, Sun H, Zhao H. Latest surveillance data on Mycoplasma pneumoniae infections in children, suggesting a new epidemic occurring in Beijing. J Clin Microbiol. 2016;54(5):1400–1. https://doi.org/10.1128/jcm.00184-16

[16]

Hua SH, Shao XJ, He P, Jin Y, Ji J, Xu J. Epidemiological characteristics of Mycoplasma pneumoniae infection in hospitalized children in Suzhou from 2007 to 2013. Int J Lab Med. 2015;36(18):2638–9. 2642.

[17]

Wang X, Li M, Luo M, Luo Q, Kang L, Xie H, et al. Mycoplasma pneumoniae triggers pneumonia epidemic in autumn and winter in Beijing: a multicentre, population‐based epidemiological study between 2015 and 2020. Emerg Microb Infect. 2022;11(1):1508–17. https://doi.org/10.1080/22221751.2022.2078228

[18]

Wu Y, Shao G. Mycoplasmology. 3rd ed Beijing: People's Medical Publishing House; 2022.

[19]

Cheng Y, Cheng Y, Dai S, Hou D, Ge M, Zhang Y, et al. The prevalence of Mycoplasma pneumoniae among children in Beijing before and during the COVID‐19 pandemic. Front Cell Infect Microbiol. 2022;12:854505. https://doi.org/10.3389/fcimb.2022.854505

[20]

Kenri T, Yamazaki T, Ohya H, Jinnai M, Oda Y, Asai S, et al. Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains. Front Microbiol. 2023;14:1202357. https://doi.org/10.3389/fmicb.2023.1202357

[21]

Meyer Sauteur PM, Beeton ML, Uldum SA, Bossuyt N, Vermeulen M, Loens K, et al. Mycoplasma pneumoniae detections before and during the COVID‐19 pandemic: results of a global survey, 2017 to 2021. Eur Commun Dis Bull. 2022;27(19):2100746. https://doi.org/10.2807/1560-7917.ES.2022.27.19.2100746

[22]
Xu K. Pediatricians warn of mycoplasma pneumonia outbreak, with infections surging among children. In: Global times. People's daily. Beijing; 2023. https://www.globaltimes.cn/page/202310/1299756.shtml
[23]

Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community‐acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–45. https://doi.org/10.1056/NEJMoa1405870

[24]

Waites KB, Ratliff A, Crabb DM, Xiao L, Qin X, Selvarangan R, et al. Macrolide‐resistant Mycoplasma pneumoniae in the United States as determined from a national surveillance program. J Clin Microbiol. 2019;57(11):e00968–1019. https://doi.org/10.1128/JCM.00968-19

[25]

Liu J, Zhao F, Lu J, Xu H, Liu H, Tang X, et al. High Mycoplasma pneumoniae loads and persistent long‐term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia. BMC Infect Dis. 2019;19(1):1045. https://doi.org/10.1186/s12879-019-4667-y

[26]

Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med. 2013;10(5):e1001444. https://doi.org/10.1371/journal.pmed.1001444

[27]

Tong L, Huang S, Zheng C, Zhang Y, Chen Z. Refractory Mycoplasma pneumoniae pneumonia in children: early recognition and management. J Clin Med. 2022;11(10):2824. https://doi.org/10.3390/jcm11102824

[28]

Loens K, van Heirstraeten L, Malhotra‐Kumar S, Goossens H, Ieven M. Optimal sampling sites and methods for detection of pathogens possibly causing community‐acquired lower respiratory tract infections. J Clin Microbiol. 2009;47(1):21–31. https://doi.org/10.1128/JCM.02037-08

[29]

Cunha BA. The clinical diagnosis of Mycoplasma pneumoniae: the diagnostic importance of highly elevated serum cold agglutinins. Eur J Clin Microbiol Infect Dis. 2008;27(10):1017–9. https://doi.org/10.1007/s10096-008-0526-2

[30]

Loens K, Ieven M, Ursi D, Beck T, Overdijk M, Sillekens P, et al. Detection of Mycoplasma pneumoniae by real‐time nucleic acid sequence‐based amplification. J Clin Microbiol. 2003;41(9):4448–50. https://doi.org/10.1128/JCM.41.9.4448-4450.2003

[31]

Li W, Fang YH, Shen HQ, Yang DH, Shu Q, Shang SQ. Evaluation of a real‐time method of simultaneous amplification and testing in diagnosis of Mycoplasma pneumoniae infection in children with pneumonia. PLoS One. 2017;12(5):e0177842. https://doi.org/10.1371/journal.pone.0177842

[32]

Lin R, Xing Z, Liu X, Chai Q, Xin Z, Huang M, et al. Performance of targeted next‐generation sequencing in the detection of respiratory pathogens and antimicrobial resistance genes for children. J Med Microbiol. 2023;72(11). https://doi.org/10.1099/jmm.0.001771

[33]

Wang Y, Yu X, Liu F, Tian X, Quan S, Jiao A, et al. Respiratory microbiota imbalance in children with Mycoplasma pneumoniae pneumonia. Emerg Microb Infect. 2023;12(1):2202272. https://doi.org/10.1080/22221751.2023.2202272

[34]

Lu Z, Dai W, Liu Y, Zhou Q, Wang H, Li D, et al. The alteration of nasopharyngeal and oropharyngeal microbiota in children with MPP and non‐MPP. Genes. 2017;8(12):380. https://doi.org/10.3390/genes8120380

[35]

Chen J, Ji F, Yin Y, Yuan S. Time to Mycoplasma pneumoniae RNA clearance for wheezy vs. non‐wheezy young children with community‐acquired pneumonia. J Trop Pediatr. 2021;67(1):fmaa109. https://doi.org/10.1093/tropej/fmaa109

[36]
Waites K, Bade D, Bébéar C, Brown SD, Davidson MK, Duffy L, et al. Methods for antimicrobial susceptibility testing for human Mycoplasmas; Approved Guideline. Wayne: Clinical and Laboratory Standards Institute; 2011.
[37]

Leal SM, Jr, Totten AH, Xiao L, Crabb DM, Ratliff A, Duffy LB, et al. Evaluation of commercial molecular diagnostic methods for detection and determination of macrolide resistance in Mycoplasma pneumoniae. J Clin Microbiol. 2020;58(6):e00242–320. https://doi.org/10.1128/JCM.00242-20

[38]

Okazaki N, Narita M, Yamada S, Izumikawa K, Umetsu M, Kenri T, et al. Characteristics of macrolide‐resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiol Immunol. 2001;45(8):617–20. https://doi.org/10.1111/j.1348-0421.2001.tb01293.x

[39]

Wang G, Wu P, Tang R, Zhang W. Global prevalence of resistance to macrolides in Mycoplasma pneumoniae: a systematic review and meta‐analysis. J Antimicrob Chemother. 2022;77(9):2353–63. https://doi.org/10.1093/jac/dkac170

[40]

Xiao L, Ptacek T, Osborne JD, Crabb DM, Simmons WL, Lefkowitz EJ, et al. Comparative genome analysis of Mycoplasma pneumoniae. BMC Genom. 2015;16(1):610. https://doi.org/10.1186/s12864-015-1801-0

[41]

Sasaki T, Kenri T, Okazaki N, Iseki M, Yamashita R, Shintani M, et al. Epidemiological study of Mycoplasma pneumoniae infections in Japan based on PCR‐restriction fragment length polymorphism of the P1 cytadhesin gene. J Clin Microbiol. 1996;34(2):447–9. https://doi.org/10.1128/jcm.34.2.447-449.1996

[42]

Dégrange S, Cazanave C, Charron A, Renaudin H, Bébéar C, Bébéar CM. Development of multiple‐locus variable‐number tandem‐repeat analysis for molecular typing of Mycoplasma pneumoniae. J Clin Microbiol. 2009;47(4):914–23. https://doi.org/10.1128/JCM.01935-08

[43]

Touati A, Blouin Y, Sirand‐Pugnet P, Renaudin H, Oishi T, Vergnaud G, et al. Molecular epidemiology of Mycoplasma pneumoniae: genotyping using single nucleotide polymorphisms and SNaPshot technology. J Clin Microbiol. 2015;53(10):3182–94. https://doi.org/10.1128/jcm.01156-15

[44]

Sun H, Xue G, Yan C, Li S, Cao L, Yuan Y, et al. Multiple‐locus variable‐number tandem‐repeat analysis of Mycoplasma pneumoniae clinical specimens and proposal for amendment of MLVA nomenclature. PLoS One. 2013;8(5):e64607. https://doi.org/10.1371/journal.pone.0064607

[45]

Kenri T, Okazaki N, Yamazaki T, Narita M, Izumikawa K, Matsuoka M, et al. Genotyping analysis of Mycoplasma pneumoniae clinical strains in Japan between 1995 and 2005:type shift phenomenon of M. pneumoniae clinical strains. J Med Microbiol. 2008;57(Pt 4):469–75. https://doi.org/10.1099/jmm.0.47634-0

[46]

Zhang XS, Zhao H, Vynnycky E, Chalker V. Positively interacting strains that co‐circulate within a network structured population induce cycling epidemics of Mycoplasma pneumoniae. Sci Rep. 2019;9(1):541. https://doi.org/10.1038/s41598-018-36325-z

[47]

Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S, et al. Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control. 2019;8(1):18. https://doi.org/10.1186/s13756-019-0469-7

[48]

Jiang FC, Wang RF, Chen P, Dong LY, Wang X, Song Q, et al. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J Glob Antimicrob Resist. 2021;27:273–8. https://doi.org/10.1016/j.jgar.2021.10.003

[49]

Guo P, Mei S, Wang Y, Zheng X, Li L, Cheng Y. Molecular typing of Mycoplasma pneumoniae and its correlation with macrolide resistance in children in Henan of China. Indian J Med Microbiol. 2023;46:100435. https://doi.org/10.1016/j.ijmmb.2023.100435

[50]

Guo Z, Liu L, Gong J, Han N, He L, Wang W, et al. Molecular features and antimicrobial susceptibility of Mycoplasma pneumoniae isolates from paediatric inpatients in Weihai, China: characteristics of M. pneumoniae in Weihai. J Glob Antimicrob Resist. 2022;28:180–4. https://doi.org/10.1016/j.jgar.2022.01.002

[51]

Li L, Ma J, Guo P, Song X, Li M, Yu Z, et al. Molecular beacon based real‐time PCR p1 gene genotyping, macrolide resistance mutation detection and clinical characteristics analysis of Mycoplasma pneumoniae infections in children. BMC Infect Dis. 2022;22(1):724. https://doi.org/10.1186/s12879-022-07715-6

[52]

Jiang TT, Sun L, Wang TY, Qi H, Tang H, Wang YC, et al. The clinical significance of macrolide resistance in pediatric Mycoplasma pneumoniae infection during COVID‐19 pandemic. Front Cell Infect Microbiol. 2023;13:1181402. https://doi.org/10.3389/fcimb.2023.1181402

[53]

Yan C, Xue G, Zhao H, Feng Y, Li S, Cui J, et al. Molecular and clinical characteristics of severe Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2019;54(7):1012–21. https://doi.org/10.1002/ppul.24327

[54]

Watkins LKF, Olson D, Diaz MH, Lin X, Demirjian A, Benitez AJ, et al. Epidemiology and molecular characteristics of Mycoplasma pneumoniae during an outbreak of M. pneumoniae‐associated stevens‐Johnson syndrome. Pediatr Infect Dis J. 2017;36(6):564–71. https://doi.org/10.1097/INF.0000000000001476

[55]

Techasaensiri C, Tagliabue C, Cagle M, Iranpour P, Katz K, Kannan TR, et al. Variation in colonization, ADP‐ribosylating and vacuolating cytotoxin, and pulmonary disease severity among Mycoplasma pneumoniae strains. Am J Respir Crit Care Med. 2010;182(6):797–804. https://doi.org/10.1164/rccm.201001-0080OC

[56]

He YS, Yang M, Liu G, Ji J, Qian SY. Safety study of moxifloxacin in children with severe refractory Mycoplasma pneumoniae pneumonia. Pediatr Pulmonol. 2023;58(7):2017–24. https://doi.org/10.1002/ppul.26426

[57]

NHCotRsRo C. Guidelines for the diagnosis and treatment of Mycoplasma pneumoniae pneumonia in children (2023 edition). Inter J Epidemiol Infect Dis. 2023;50(5):79–85. https://doi.org/10.3760/cma.j.cn331340-20230217-00023

[58]

Peng Y, Chen Z, Li Y, Lu Q, Li H, Han Y, et al. Combined therapy of Xiaoer Feire Kechuan oral liquid and azithromycin for Mycoplasma pneumoniae pneumonia in children: a systematic review & meta‐analysis. Phytomedicine. 2022;96:153899. https://doi.org/10.1016/j.phymed.2021.153899

[59]

Wang Y, Xu B, Wu X, Yin Q, Wang Y, Li J, et al. Increased macrolide resistance rate of M3562 Mycoplasma pneumoniae correlated with macrolide usage and genotype shifting. Front Cell Infect Microbiol. 2021;11:675466. https://doi.org/10.3389/fcimb.2021.675466

[60]

Hung HM, Chuang CH, Chen YY, Liao WC, Li SW, Chang IY, et al. Clonal spread of macrolide‐resistant Mycoplasma pneumoniae sequence type‐3 and type‐17 with recombination on non‐P1 adhesin among children in Taiwan. Clin Microbiol Infect. 2021;27(8):1169.e1–1169.e6. https://doi.org/10.1016/j.cmi.2020.09.035

[61]

Wang N, Zhang H, Yin Y, Xu X, Xiao L, Liu Y. Antimicrobial susceptibility profiles and genetic characteristics of Mycoplasma pneumoniae in Shanghai, China, from 2017 to 2019. Infect Drug Resist. 2022;15:4443–52. https://doi.org/10.2147/IDR.S370126

[62]

Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, et al. Periodic genotype shifts in clinically prevalent Mycoplasma pneumoniae strains in Japan. Front Cell Infect Microbiol. 2020;10:385. https://doi.org/10.3389/fcimb.2020.00385

[63]

Lee JK, Choi YY, Sohn YJ, Kim KM, Kim YK, Han MS, et al. Persistent high macrolide resistance rate and increase of macrolide‐resistant ST14 strains among Mycoplasma pneumoniae in South Korea, 2019‐2020. J Microbiol Immunol Infect. 2022;55(5):910–6. https://doi.org/10.1016/j.jmii.2021.07.011

iLABMED
Pages 148-157
Cite this article:
Sun H, Xiao L. Overview of the epidemic characteristics of Mycoplasma pneumoniae infection around COVID pandemic. iLABMED, 2023, 1(3): 148-157. https://doi.org/10.1002/ila2.27

443

Views

29

Downloads

1

Crossref

Altmetrics

Received: 05 November 2023
Accepted: 13 November 2023
Published: 18 December 2023
© 2023 The Authors. Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return