Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Mycoplasma pneumoniae (M. pneumoniae) is a cell wall‐less respiratory pathogen causing community‐acquired pneumonia and extrapulmonary manifestations. It is transmitted through close contact and shows periodic regional outbreaks. The coronavirus disease (COVID‐19) pandemic interfered with the global spread of M. pneumoniae. A large‐scale post‐COVID outbreak is currently ongoing in China. To help physicians better understand and manage this epidemic, we provide this review summarizing current knowledge on the pathogenesis, epidemic characteristics, macrolide resistance, diagnostic methods, and clinical treatment strategies for this pathogen.
Waites KB, Talkington DF. Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev. 2004;17(4):697–728. https://doi.org/10.1128/CMR.17.4.697-728.2004
Yus E, Maier T, Michalodimitrakis K, van Noort V, Yamada T, Chen WH, et al. Impact of genome reduction on bacterial metabolism and its regulation. Science. 2009;326(5957):1263–8. https://doi.org/10.1126/science.1177263
Waites KB, Xiao L, Liu Y, Balish MF, Atkinson TP. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin Microbiol Rev. 2017;30(3):747–809. https://doi.org/10.1128/CMR.00114-16
Kannan TR, Baseman JB. ADP‐ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc Natl Acad Sci U S A. 2006;103(17):6724–9. https://doi.org/10.1073/pnas.0510644103
Hames C, Halbedel S, Hoppert M, Frey J, Stülke J. Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae. J Bacteriol. 2009;191(3):747–53. https://doi.org/10.1128/JB.01103-08
Großhennig S, Ischebeck T, Gibhardt J, Busse J, Feussner I, Stülke J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol. 2016;100(1):42–54. https://doi.org/10.1111/mmi.13300
Gan T, Yu J, He J. miRNA, lncRNA and circRNA: targeted molecules with therapeutic promises in Mycoplasma pneumoniae infection. Arch Microbiol. 2023;205(8):293. https://doi.org/10.1007/s00203-023-03636-3
Dumke R, Schurwanz N, Jacobs E. Characterisation of subtype‐ and variant‐specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae. Int J Med Microbiol. 2008;298(5–6):483–91. https://doi.org/10.1016/j.ijmm.2007.06.002
Yamamoto T, Kida Y, Sakamoto Y, Kuwano K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell Microbiol. 2017;19(3): e12666. https://doi.org/10.1111/cmi.12666
Chen LS, Li C, You XX, Lin YW, Wu YM. The mpn668 gene of Mycoplasma pneumoniae encodes a novel organic hydroperoxide resistance protein. Int J Med Microbiol. 2018;308(7):776–83. https://doi.org/10.1016/j.ijmm.2018.04.006
Yu Y, Wang J, Han R, Wang L, Zhang L, Zhang AY, et al. Mycoplasma hyopneumoniae evades complement activation by binding to factor H via elongation factor thermo unstable (EF‐Tu). Virulence. 2020;11(1):1059–74. https://doi.org/10.1080/21505594.2020.1806664
Blötz C, Singh N, Dumke R, Stülke J. Characterization of an immunoglobulin binding protein (IbpM) from Mycoplasma pneumoniae. Front Microbiol. 2020;11:685. https://doi.org/10.3389/fmicb.2020.00685
Dallo SF, Baseman JB. Intracellular DNA replication and long‐term survival of pathogenic mycoplasmas. Microb Pathog. 2000;29(5):301–9. https://doi.org/10.1006/mpat.2000.0395
Simmons WL, Daubenspeck JM, Osborne JD, Balish MF, Waites KB, Dybvig K. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. Microbiology. 2013;159(Pt 4):737–47. https://doi.org/10.1099/mic.0.064782-0
Yan C, Sun H, Zhao H. Latest surveillance data on Mycoplasma pneumoniae infections in children, suggesting a new epidemic occurring in Beijing. J Clin Microbiol. 2016;54(5):1400–1. https://doi.org/10.1128/jcm.00184-16
Hua SH, Shao XJ, He P, Jin Y, Ji J, Xu J. Epidemiological characteristics of Mycoplasma pneumoniae infection in hospitalized children in Suzhou from 2007 to 2013. Int J Lab Med. 2015;36(18):2638–9. 2642.
Wang X, Li M, Luo M, Luo Q, Kang L, Xie H, et al. Mycoplasma pneumoniae triggers pneumonia epidemic in autumn and winter in Beijing: a multicentre, population‐based epidemiological study between 2015 and 2020. Emerg Microb Infect. 2022;11(1):1508–17. https://doi.org/10.1080/22221751.2022.2078228
Wu Y, Shao G. Mycoplasmology. 3rd ed Beijing: People's Medical Publishing House; 2022.
Cheng Y, Cheng Y, Dai S, Hou D, Ge M, Zhang Y, et al. The prevalence of Mycoplasma pneumoniae among children in Beijing before and during the COVID‐19 pandemic. Front Cell Infect Microbiol. 2022;12:854505. https://doi.org/10.3389/fcimb.2022.854505
Kenri T, Yamazaki T, Ohya H, Jinnai M, Oda Y, Asai S, et al. Genotyping of Mycoplasma pneumoniae strains isolated in Japan during 2019 and 2020: spread of p1 gene type 2c and 2j variant strains. Front Microbiol. 2023;14:1202357. https://doi.org/10.3389/fmicb.2023.1202357
Meyer Sauteur PM, Beeton ML, Uldum SA, Bossuyt N, Vermeulen M, Loens K, et al. Mycoplasma pneumoniae detections before and during the COVID‐19 pandemic: results of a global survey, 2017 to 2021. Eur Commun Dis Bull. 2022;27(19):2100746. https://doi.org/10.2807/1560-7917.ES.2022.27.19.2100746
Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community‐acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–45. https://doi.org/10.1056/NEJMoa1405870
Waites KB, Ratliff A, Crabb DM, Xiao L, Qin X, Selvarangan R, et al. Macrolide‐resistant Mycoplasma pneumoniae in the United States as determined from a national surveillance program. J Clin Microbiol. 2019;57(11):e00968–1019. https://doi.org/10.1128/JCM.00968-19
Liu J, Zhao F, Lu J, Xu H, Liu H, Tang X, et al. High Mycoplasma pneumoniae loads and persistent long‐term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia. BMC Infect Dis. 2019;19(1):1045. https://doi.org/10.1186/s12879-019-4667-y
Spuesens EB, Fraaij PL, Visser EG, Hoogenboezem T, Hop WC, van Adrichem LN, et al. Carriage of Mycoplasma pneumoniae in the upper respiratory tract of symptomatic and asymptomatic children: an observational study. PLoS Med. 2013;10(5):e1001444. https://doi.org/10.1371/journal.pmed.1001444
Tong L, Huang S, Zheng C, Zhang Y, Chen Z. Refractory Mycoplasma pneumoniae pneumonia in children: early recognition and management. J Clin Med. 2022;11(10):2824. https://doi.org/10.3390/jcm11102824
Loens K, van Heirstraeten L, Malhotra‐Kumar S, Goossens H, Ieven M. Optimal sampling sites and methods for detection of pathogens possibly causing community‐acquired lower respiratory tract infections. J Clin Microbiol. 2009;47(1):21–31. https://doi.org/10.1128/JCM.02037-08
Cunha BA. The clinical diagnosis of Mycoplasma pneumoniae: the diagnostic importance of highly elevated serum cold agglutinins. Eur J Clin Microbiol Infect Dis. 2008;27(10):1017–9. https://doi.org/10.1007/s10096-008-0526-2
Loens K, Ieven M, Ursi D, Beck T, Overdijk M, Sillekens P, et al. Detection of Mycoplasma pneumoniae by real‐time nucleic acid sequence‐based amplification. J Clin Microbiol. 2003;41(9):4448–50. https://doi.org/10.1128/JCM.41.9.4448-4450.2003
Li W, Fang YH, Shen HQ, Yang DH, Shu Q, Shang SQ. Evaluation of a real‐time method of simultaneous amplification and testing in diagnosis of Mycoplasma pneumoniae infection in children with pneumonia. PLoS One. 2017;12(5):e0177842. https://doi.org/10.1371/journal.pone.0177842
Lin R, Xing Z, Liu X, Chai Q, Xin Z, Huang M, et al. Performance of targeted next‐generation sequencing in the detection of respiratory pathogens and antimicrobial resistance genes for children. J Med Microbiol. 2023;72(11). https://doi.org/10.1099/jmm.0.001771
Wang Y, Yu X, Liu F, Tian X, Quan S, Jiao A, et al. Respiratory microbiota imbalance in children with Mycoplasma pneumoniae pneumonia. Emerg Microb Infect. 2023;12(1):2202272. https://doi.org/10.1080/22221751.2023.2202272
Lu Z, Dai W, Liu Y, Zhou Q, Wang H, Li D, et al. The alteration of nasopharyngeal and oropharyngeal microbiota in children with MPP and non‐MPP. Genes. 2017;8(12):380. https://doi.org/10.3390/genes8120380
Chen J, Ji F, Yin Y, Yuan S. Time to Mycoplasma pneumoniae RNA clearance for wheezy vs. non‐wheezy young children with community‐acquired pneumonia. J Trop Pediatr. 2021;67(1):fmaa109. https://doi.org/10.1093/tropej/fmaa109
Leal SM, Jr, Totten AH, Xiao L, Crabb DM, Ratliff A, Duffy LB, et al. Evaluation of commercial molecular diagnostic methods for detection and determination of macrolide resistance in Mycoplasma pneumoniae. J Clin Microbiol. 2020;58(6):e00242–320. https://doi.org/10.1128/JCM.00242-20
Okazaki N, Narita M, Yamada S, Izumikawa K, Umetsu M, Kenri T, et al. Characteristics of macrolide‐resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiol Immunol. 2001;45(8):617–20. https://doi.org/10.1111/j.1348-0421.2001.tb01293.x
Wang G, Wu P, Tang R, Zhang W. Global prevalence of resistance to macrolides in Mycoplasma pneumoniae: a systematic review and meta‐analysis. J Antimicrob Chemother. 2022;77(9):2353–63. https://doi.org/10.1093/jac/dkac170
Xiao L, Ptacek T, Osborne JD, Crabb DM, Simmons WL, Lefkowitz EJ, et al. Comparative genome analysis of Mycoplasma pneumoniae. BMC Genom. 2015;16(1):610. https://doi.org/10.1186/s12864-015-1801-0
Sasaki T, Kenri T, Okazaki N, Iseki M, Yamashita R, Shintani M, et al. Epidemiological study of Mycoplasma pneumoniae infections in Japan based on PCR‐restriction fragment length polymorphism of the P1 cytadhesin gene. J Clin Microbiol. 1996;34(2):447–9. https://doi.org/10.1128/jcm.34.2.447-449.1996
Dégrange S, Cazanave C, Charron A, Renaudin H, Bébéar C, Bébéar CM. Development of multiple‐locus variable‐number tandem‐repeat analysis for molecular typing of Mycoplasma pneumoniae. J Clin Microbiol. 2009;47(4):914–23. https://doi.org/10.1128/JCM.01935-08
Touati A, Blouin Y, Sirand‐Pugnet P, Renaudin H, Oishi T, Vergnaud G, et al. Molecular epidemiology of Mycoplasma pneumoniae: genotyping using single nucleotide polymorphisms and SNaPshot technology. J Clin Microbiol. 2015;53(10):3182–94. https://doi.org/10.1128/jcm.01156-15
Sun H, Xue G, Yan C, Li S, Cao L, Yuan Y, et al. Multiple‐locus variable‐number tandem‐repeat analysis of Mycoplasma pneumoniae clinical specimens and proposal for amendment of MLVA nomenclature. PLoS One. 2013;8(5):e64607. https://doi.org/10.1371/journal.pone.0064607
Kenri T, Okazaki N, Yamazaki T, Narita M, Izumikawa K, Matsuoka M, et al. Genotyping analysis of Mycoplasma pneumoniae clinical strains in Japan between 1995 and 2005:type shift phenomenon of M. pneumoniae clinical strains. J Med Microbiol. 2008;57(Pt 4):469–75. https://doi.org/10.1099/jmm.0.47634-0
Zhang XS, Zhao H, Vynnycky E, Chalker V. Positively interacting strains that co‐circulate within a network structured population induce cycling epidemics of Mycoplasma pneumoniae. Sci Rep. 2019;9(1):541. https://doi.org/10.1038/s41598-018-36325-z
Zhao F, Liu J, Shi W, Huang F, Liu L, Zhao S, et al. Antimicrobial susceptibility and genotyping of Mycoplasma pneumoniae isolates in Beijing, China, from 2014 to 2016. Antimicrob Resist Infect Control. 2019;8(1):18. https://doi.org/10.1186/s13756-019-0469-7
Jiang FC, Wang RF, Chen P, Dong LY, Wang X, Song Q, et al. Genotype and mutation patterns of macrolide resistance genes of Mycoplasma pneumoniae from children with pneumonia in Qingdao, China, in 2019. J Glob Antimicrob Resist. 2021;27:273–8. https://doi.org/10.1016/j.jgar.2021.10.003
Guo P, Mei S, Wang Y, Zheng X, Li L, Cheng Y. Molecular typing of Mycoplasma pneumoniae and its correlation with macrolide resistance in children in Henan of China. Indian J Med Microbiol. 2023;46:100435. https://doi.org/10.1016/j.ijmmb.2023.100435
Guo Z, Liu L, Gong J, Han N, He L, Wang W, et al. Molecular features and antimicrobial susceptibility of Mycoplasma pneumoniae isolates from paediatric inpatients in Weihai, China: characteristics of M. pneumoniae in Weihai. J Glob Antimicrob Resist. 2022;28:180–4. https://doi.org/10.1016/j.jgar.2022.01.002
Li L, Ma J, Guo P, Song X, Li M, Yu Z, et al. Molecular beacon based real‐time PCR p1 gene genotyping, macrolide resistance mutation detection and clinical characteristics analysis of Mycoplasma pneumoniae infections in children. BMC Infect Dis. 2022;22(1):724. https://doi.org/10.1186/s12879-022-07715-6
Jiang TT, Sun L, Wang TY, Qi H, Tang H, Wang YC, et al. The clinical significance of macrolide resistance in pediatric Mycoplasma pneumoniae infection during COVID‐19 pandemic. Front Cell Infect Microbiol. 2023;13:1181402. https://doi.org/10.3389/fcimb.2023.1181402
Yan C, Xue G, Zhao H, Feng Y, Li S, Cui J, et al. Molecular and clinical characteristics of severe Mycoplasma pneumoniae pneumonia in children. Pediatr Pulmonol. 2019;54(7):1012–21. https://doi.org/10.1002/ppul.24327
Watkins LKF, Olson D, Diaz MH, Lin X, Demirjian A, Benitez AJ, et al. Epidemiology and molecular characteristics of Mycoplasma pneumoniae during an outbreak of M. pneumoniae‐associated stevens‐Johnson syndrome. Pediatr Infect Dis J. 2017;36(6):564–71. https://doi.org/10.1097/INF.0000000000001476
Techasaensiri C, Tagliabue C, Cagle M, Iranpour P, Katz K, Kannan TR, et al. Variation in colonization, ADP‐ribosylating and vacuolating cytotoxin, and pulmonary disease severity among Mycoplasma pneumoniae strains. Am J Respir Crit Care Med. 2010;182(6):797–804. https://doi.org/10.1164/rccm.201001-0080OC
He YS, Yang M, Liu G, Ji J, Qian SY. Safety study of moxifloxacin in children with severe refractory Mycoplasma pneumoniae pneumonia. Pediatr Pulmonol. 2023;58(7):2017–24. https://doi.org/10.1002/ppul.26426
NHCotRsRo C. Guidelines for the diagnosis and treatment of Mycoplasma pneumoniae pneumonia in children (2023 edition). Inter J Epidemiol Infect Dis. 2023;50(5):79–85. https://doi.org/10.3760/cma.j.cn331340-20230217-00023
Peng Y, Chen Z, Li Y, Lu Q, Li H, Han Y, et al. Combined therapy of Xiaoer Feire Kechuan oral liquid and azithromycin for Mycoplasma pneumoniae pneumonia in children: a systematic review & meta‐analysis. Phytomedicine. 2022;96:153899. https://doi.org/10.1016/j.phymed.2021.153899
Wang Y, Xu B, Wu X, Yin Q, Wang Y, Li J, et al. Increased macrolide resistance rate of M3562 Mycoplasma pneumoniae correlated with macrolide usage and genotype shifting. Front Cell Infect Microbiol. 2021;11:675466. https://doi.org/10.3389/fcimb.2021.675466
Hung HM, Chuang CH, Chen YY, Liao WC, Li SW, Chang IY, et al. Clonal spread of macrolide‐resistant Mycoplasma pneumoniae sequence type‐3 and type‐17 with recombination on non‐P1 adhesin among children in Taiwan. Clin Microbiol Infect. 2021;27(8):1169.e1–1169.e6. https://doi.org/10.1016/j.cmi.2020.09.035
Wang N, Zhang H, Yin Y, Xu X, Xiao L, Liu Y. Antimicrobial susceptibility profiles and genetic characteristics of Mycoplasma pneumoniae in Shanghai, China, from 2017 to 2019. Infect Drug Resist. 2022;15:4443–52. https://doi.org/10.2147/IDR.S370126
Kenri T, Suzuki M, Sekizuka T, Ohya H, Oda Y, Yamazaki T, et al. Periodic genotype shifts in clinically prevalent Mycoplasma pneumoniae strains in Japan. Front Cell Infect Microbiol. 2020;10:385. https://doi.org/10.3389/fcimb.2020.00385
Lee JK, Choi YY, Sohn YJ, Kim KM, Kim YK, Han MS, et al. Persistent high macrolide resistance rate and increase of macrolide‐resistant ST14 strains among Mycoplasma pneumoniae in South Korea, 2019‐2020. J Microbiol Immunol Infect. 2022;55(5):910–6. https://doi.org/10.1016/j.jmii.2021.07.011
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.