Journal Home > Volume 1 , Issue 2

The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture‐independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host‐graft “talk,” which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short‐ and long‐term survival. Microbiome‐derived factors may contribute to lung xenograft survival when using genetically multimodified pig‐derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long‐term survival in these patients.


menu
Abstract
Full text
Outline
About this article

Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective

Show Author's information Jiao Guohui1Wu Kun1Tian Dong2Zhang Ji3Liu Dong3Wei Dong3Chen Jingyu3( )
Center for Medical Device Evaluation, NMPA, Beijing, China
Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China

Abstract

The respiratory tract is known to harbor a microbial community including bacteria, viruses, and fungi. New techniques contribute enormously to the identification of unknown or culture‐independent species and reveal the interaction of the community with the host immune system. The existing respiratory microbiome and substantial equilibrium of the transplanted microbiome from donor lung grafts provide an extreme bloom of dynamic changes in the microenvironment in lung transplantation (LT) recipients. Dysbiosis in grafts are not only related to the modified microbial components but also involve the kinetics of the host‐graft “talk,” which signifies the destination of graft allograft injury, acute rejection, infection, and chronic allograft dysfunction development in short‐ and long‐term survival. Microbiome‐derived factors may contribute to lung xenograft survival when using genetically multimodified pig‐derived organs. Here, we review the most advanced knowledge of the dynamics and resilience of microbial communities in transplanted lungs with various pretransplant indications. Conceptual and analytical points of view have been illustrated along the time series, gaining insight into the microbiome and lung grafts. Future endeavors on precise tools, sophisticated models, and novel targeted regimens are needed to improve the long‐term survival in these patients.

Keywords: microbiome, kinetics, xenotransplantation, allotransplanting, lung

References(91)

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.
Cheng M, Ning K. Stereotypes about enterotype: the old and new ideas. Genomics Proteomics Bioinformatics. 2019;17(1):4–12.
Stehlik J, Kobashigawa J, Hunt SA, Reichenspurner H, Kirklin JK. Honoring 50 years of clinical heart transplantation in circulation: in‐depth state‐of‐the‐art review. Circulation. 2018;137(1):71–87.
Dang AT, Marsland BJ. Microbes, metabolites, and the gut‐lung axis. Mucosal Immunol. 2019;12(4):843–50.
Raftery AL, Tsantikos E, Harris NL, Hibbs ML. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol. 2020;11:2144.
Price CE, O'Toole GA. The gut‐lung axis in cystic fibrosis. J Bacteriol. 2021;203(20):e0031121.
Amati F, Stainer A, Mantero M, Gramegna A, Simonetta E, Suigo G, et al. Lung microbiome in idiopathic pulmonary fibrosis and other interstitial lung diseases. Int J Mol Sci. 2022;23(2):977.
Bassis CM, Erb‐Downward JR, Dickson RP, Freeman CM, Young VB, Schmidt TM, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio. 2015;6(2):e00037.
Zemanick ET, Wagner BD, Robertson CE, Stevens MJ, Szefler SJ, Accurso FJ, et al. Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods. Ann Am Thorac Soc. 2015;12(2):221–9.
Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, et al. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild‐to‐moderate cystic fibrosis lung disease. PLoS One. 2016;11(3):e0149998.
Cribbs SK, Beck JM. Microbiome in the pathogenesis of cystic fibrosis and lung transplant‐related disease. Transl Res. 2017;179:84–96.
McCort M, MacKenzie E, Pursell K, Pitrak D. Bacterial infections in lung transplantation. J Thorac Dis. 2021;13(11):6654–72.
Shi CY, Yu CH, Yu WY, Ying HZ. Gut‐Lung microbiota in chronic pulmonary diseases: evolution, pathogenesis, and therapeutics. Can J Infect Dis Med Microbiol. 2021;2021:927844110.1155/2021/9278441
McGinniss JE, Whiteside SA, Simon‐Soro A, Diamond JM, Christie JD, Bushman FD, et al. The lung microbiome in lung transplantation. J Heart Lung Transplant. 2021;40(8):733–44.
Dickson RP, Erb‐Downward JR, Freeman CM, Walker N, Scales BS, Beck JM, et al. Changes in the lung microbiome following lung transplantation include the emergence of two distinct Pseudomonas species with distinct clinical associations. PLoS One. 2014;9(5):e97214.
Bernasconi E, Pattaroni C, Koutsokera A, Pison C, Kessler R, Benden C, et al. Airway microbiota determines innate cell inflammatory or tissue remodeling profiles in lung transplantation. Am J Respir Crit Care Med. 2016;194(10):1252–63.
Sinha R, Weissenburger‐Moser LA, Clarke JL, Smith LM, Heires AJ, Romberger DJ, et al. Short term dynamics of the sputum microbiome among COPD patients. PLoS One. 2018;13(3):e0191499.
Pirozzolo I, Li Z, Sepulveda M, Alegre ML. Influence of the microbiome on solid organ transplant survival. J Heart Lung Transplant. 2021;40(8):745–53.
Steenhuijsen Piters WAde, Heinonen S, Hasrat R, Bunsow E, Smith B, Suarez‐Arrabal MC, et al. Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2016;194(9):1104–15.
Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade‐long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2012;109(15):5809–14.
Li Z, Li Y, Sun Q, Wei J, Li B, Qiu Y, et al. Targeting &QJ0;the pulmonary microbiota to fight against respiratory diseases. Cells. 2022;11(5):916.
Das S, Bernasconi E, Koutsokera A, Wurlod DA, Tripathi V, Bonilla‐Rosso G, et al. A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation. Nat Commun. 2021;12(1):2126.
Shankar J, Nguyen MH, Crespo MM, Kwak EJ, Lucas SK, McHugh KJ, et al. Looking beyond respiratory cultures: microbiome‐cytokine signatures of bacterial pneumonia and tracheobronchitis in lung transplant recipients. Am J Transplant. 2016;16(6):1766–78.
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.
Flannigan KL, Taylor MR, Pereira SK, Rodriguez‐Arguello J, Moffat AW, Alston L, et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J Heart Lung Transplant. 2018;37(9):1047–59.
Madan S, Mehra MR. The gut microbiome and transplantation: an Amazon jungle. J Heart Lung Transplant. 2018;37(9):1043–4.
Beaume M, Lazarevic V, Köhler T, Gaïa N, Manuel O, Aubert JD, et al. Microbial communities of conducting and respiratory zones of Lung‐Transplanted patients. Front Microbiol. 2016;7:1749.
Leung MK, Rachakonda L, Weill D, Hwang PH. Effects of sinus surgery on lung transplantation outcomes in cystic fibrosis. Am J Rhinol. 2008;22(2):192–6.
Becker J, Poroyko V, Bhorade S. The lung microbiome after lung transplantation. Expert Rev Respir Med. 2014;8(2):221–31.
Whiley RA, Sheikh NP, Mushtaq N, Hagi‐Pavli E, Personne Y, Javaid D, et al. Differential potentiation of the virulence of the Pseudomonas aeruginosa cystic fibrosis liverpool epidemic strain by oral commensal streptococci. J Infect Dis. 2014;209(5):769–80.
Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog. 2017;13(4):e1006300.
Pahlman LI, Manoharan L, Aspelund AS. Divergent airway microbiomes in lung transplant recipients with or without pulmonary infection. Respir Res. 2021;22(1):118.
Botha P, Archer L, Anderson RL, Lordan J, Dark JH, Corris PA, et al. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation. 2008;85(5):771–4.
Yonker LM, Cigana C, Hurley BP, Bragonzi A. Host‐pathogen interplay in the respiratory environment of cystic fibrosis. J Cyst Fibros. 2015;14(4):431–9.
Stephenson D, Perry A, Appleby MR, Lee D, Davison J, Johnston A, et al. An evaluation of methods for the isolation of nontuberculous mycobacteria from patients with cystic fibrosis, bronchiectasis and patients assessed for lung transplantation. BMC Pulm Med. 2019;19(1):19.
Peghin M, Hirsch HH, Len Ó, Codina G, Berastegui C, Sáez B, et al. Epidemiology and immediate indirect effects of respiratory viruses in lung transplant recipients: a 5‐year prospective study. Am J Transplant. 2017;17(5):1304–12.
Soccal PM, Aubert JD, Bridevaux PO, Garbino J, Thomas Y, Rochat T, et al. Upper and lower respiratory tract viral infections and acute graft rejection in lung transplant recipients. Clin Infect Dis. 2010;51(2):163–70.
Costa C, Delsedime L, Solidoro P, Curtoni A, Bergallo M, Libertucci D, et al. Herpesviruses detection by quantitative real‐time polymerase chain reaction in bronchoalveolar lavage and transbronchial biopsy in lung transplant: viral infections and histopathological correlation. Transplant Proc. 2010;42(4):1270–4.
Pan L, Wu F, Cai Q, Xu Z, Hu H, Tang T, et al. Whole genome profiling of lung microbiome in solid organ transplant recipients reveals virus involved microecology may worsen prognosis. Front Cell Infect Microbiol. 2022;12:863399.
Efstathiou S, Ho YM, Hall S, Styles CJ, Scott SD, Gompels UA. Murine herpesvirus 68 is genetically related to the gammaherpesviruses Epstein‐Barr virus and herpesvirus saimiri. J Gen Virol. 1990;71(Pt 6):1365–72.
Gurczynski SJ, Procario MC, O'Dwyer DN, Wilke CA, Moore BB. Loss of CCR2 signaling alters leukocyte recruitment and exacerbates gamma‐herpesvirus‐induced pneumonitis and fibrosis following bone marrow transplantation. Am J Physiol Lung Cell Mol Physiol. 2016;311(3):L611–27.
Garantziotis S, Howell DN, McAdams HP, Davis RD, Henshaw NG, Palmer SM. Influenza pneumonia in lung transplant recipients: clinical features and association with bronchiolitis obliterans syndrome. Chest. 2001;119(4):1277–80.
Abbas AA, Diamond JM, Chehoud C, Chang B, Kotzin JJ, Young JC, et al. The perioperative lung transplant virome: torque teno viruses are elevated in donor lungs and show divergent dynamics in primary graft dysfunction. Am J Transplant. 2017;17(5):1313–24.
Mitchell AB, Li CX, Oliver BGG, Holmes EC, Glanville AR. High‐resolution metatranscriptomic characterization of the pulmonary RNA virome after lung transplantation. Transplantation. 2021;105(12):2546–53.
Krause R, Moissl‐Eichinger C, Halwachs B, Gorkiewicz G, Berg G, Valentin T, et al. Mycobiome in the lower respiratory tract—a clinical perspective. Front Microbiol. 2016;7:2169.
Bittinger K, Charlson ES, Loy E, Shirley DJ, Haas AR, Laughlin A, et al. Improved characterization of medically relevant fungi in the human respiratory tract using next‐generation sequencing. Genome Biol. 2014;15(10):487.
Kim SH, Clark ST, Surendra A, Copeland JK, Wang PW, Ammar R, et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog. 2015;11(11):e1005308.
Weigt SS, Elashoff RM, Huang C, Ardehali A, Gregson AL, Kubak B, et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. Am J Transplant. 2009;9(8):1903–11.
Hanage WP. Microbiology: microbiome science needs a healthy dose of scepticism. Nature. 2014;512(7514):247–8.
Abu‐Sbeih H, Ali FS, Wang Y. Clinical review on the utility of fecal microbiota transplantation in immunocompromised patients. Curr Gastroenterol Rep. 2019;21(4):8.
Tabibian JH, Kenderian SS. The microbiome and immune regulation after transplantation. Transplantation. 2017;101(1):56–62.
Rey K, Choy JC. Immunologic effects of the microbiota in organ transplantation. Clin Lab Med. 2019;39(1):185–95.
Lei YM, Chen L, Wang Y, Stefka AT, Molinero LL, Theriault B, et al. The composition of the microbiota modulates allograft rejection. J Clin Invest. 2016;126(7):2736–44.
Alhabbab R, Blair P, Elgueta R, Stolarczyk E, Marks E, Becker PD, et al. Diversity of gut microflora is required for the generation of B cell with regulatory properties in a skin graft model. Sci Rep. 2015;5:11554.
Bai YZ, Roberts SH, Kreisel D, Nava RG. Microbiota in heart and lung transplantation: implications for innate‐adaptive immune interface. Curr Opin Organ Transplant. 2021;26(6):609–14.
Broecker F, Klumpp J, Schuppler M, Russo G, Biedermann L, Hombach M, et al. Long‐term changes of bacterial and viral compositions in the intestine of a recovered clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb Mol Case Stud. 2016;2(1):a000448.
Sharma NS, Vestal G, Wille K, Patel KN, Cheng F, Tipparaju S, et al. Differences in airway microbiome and metabolome of single lung transplant recipients. Respir Res. 2020;21(1):104.
Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S. Chronic obstructive pulmonary disease and asthma‐associated proteobacteria, but not commensal prevotella spp., promote toll‐like receptor 2‐independent lung inflammation and pathology. Immunology. 2015;144(2):333–42.
Mouraux S, Bernasconi E, Pattaroni C, Koutsokera A, Aubert JD, Claustre J, et al. Airway microbiota signals anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin Immunol. 2018;141(2):718–29e7.
Kilian M, Riley DR, Jensen A, Bruggemann H, Tettelin H. Parallel evolution of streptococcus pneumoniae and streptococcus mitis to pathogenic and mutualistic lifestyles. mBio. 2014;5(4):e01490–14.
Huang YJ, Sethi S, Murphy T, Nariya S, Boushey HA, Lynch SV. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52(8):2813–23.
Stolz D, Leeming DJ, Kristensen JHE, Karsdal MA, Boersma W, Louis R, et al. Systemic biomarkers of collagen and elastin turnover are associated with clinically relevant outcomes in COPD. Chest. 2017;151(1):47–59.
Beaume M, Köhler T, Greub G, Manuel O, Aubert JD, Baerlocher L, et al. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation. Sci Rep. 2017;7:40309.
Su J, Li CX, Liu HY, Lian QY, Chen A, You ZX, et al. The airway microbiota signatures of infection and rejection in lung transplant recipients. Microbiol Spectr. 2022;10:e0034421.
Prakash A, Sundar SV, Zhu YG, Tran A, Lee JW, Lowell C, et al. Lung ischemia‐reperfusion is a sterile inflammatory process influenced by commensal microbiota in mice. Shock. 2015;44(3):272–9.
Khalifah AP, Hachem RR, Chakinala MM, Schechtman KB, Patterson GA, Schuster DP, et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med. 2004;170(2):181–7.
Willner DL, Hugenholtz P, Yerkovich ST, Tan ME, Daly JN, Lachner N, et al. Reestablishment of recipient‐associated microbiota in the lung allograft is linked to reduced risk of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med. 2013;187(6):640–7.
Gottlieb J, Mattner F, Weissbrodt H, Dierich M, Fuehner T, Strueber M, et al. Impact of graft colonization with gram‐negative bacteria after lung transplantation on the development of bronchiolitis obliterans syndrome in recipients with cystic fibrosis. Respir Med. 2009;103(5):743–9.
Borewicz K, Pragman AA, Kim HB, Hertz M, Wendt C, Isaacson RE. Longitudinal analysis of the lung microbiome in lung transplantation. FEMS Microbiol Lett. 2013;339(1):57–65.
Fothergill JL, Neill DR, Loman N, Winstanley C, Kadioglu A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun. 2014;5:4780.
Bacci G, Rossi A, Armanini F, Cangioli L, De Fino I, Segata N, et al. Lung and gut microbiota changes associated with Pseudomonas aeruginosa infection in mouse models of cystic fibrosis. Int J Mol Sci. 2021;22(22):12169.
Ciofu O, Johansen HK, Aanaes K, Wassermann T, Alhede M, Buchwald Cvon, et al. P. aeruginosa in the paranasal sinuses and transplanted lungs have similar adaptive mutations as isolates from chronically infected CF lungs. J Cyst Fibros. 2013;12(6):729–36.
Combs MP, Wheeler DS, Luth JE, Falkowski NR, Walker NM, Erb‐Downward JR, et al. Lung microbiota predict chronic rejection in healthy lung transplant recipients: a prospective cohort study. Lancet Respir Med. 2021;9(6):601–12.
Mitchell AB. The lung microbiome and transplantation. Curr Opin Organ Transplant. 2019;24(3):305–10.
De Soyza A, Meachery G, Hester KL, Nicholson A, Parry G, Tocewicz K, et al. Lung transplantation for patients with cystic fibrosis and burkholderia cepacia complex infection: a single‐center experience. J Heart Lung Transplant. 2010;29(12):1395–404.
Simon‐Soro A, Sohn MB, McGinniss JE, Imai I, Brown MC, Knecht VR, et al. Upper respiratory dysbiosis with a facultative‐dominated ecotype in advanced lung disease and dynamic change after lung transplant. Ann Am Thorac Soc. 2019;16(11):1383–91.
Hérivaux A, Willis JR, Mercier T, Lagrou K, Gonçalves SM, Gonçales RA, et al. Lung microbiota predict invasive pulmonary aspergillosis and its outcome in immunocompromised patients. Thorax. 2022;77(3):283–91.
Schott C, Weigt SS, Turturice BA, Metwally A, Belperio J, Finn PW, et al. Bronchiolitis obliterans syndrome susceptibility and the pulmonary microbiome. J Heart Lung Transplant. 2018;37(9):1131–40.
Boussamet L, Montassier E, Soulillou JP, Berthelot L. Anti alpha1‐3Gal antibodies and gal content in gut microbiota in immune disorders and multiple sclerosis. Clin Immunol. 2022;235:108693.
Montassier E, Al‐Ghalith GA, Mathé C, Le Bastard Q, Douillard V, Garnier A, et al. Distribution of bacterial alpha1,3‐Galactosyltransferase genes in the human gut microbiome. Front Immunol. 2019;10:3000.
Yue Y, Xu W, Kan Y, Zhao HY, Zhou Y, Song X, et al. Extensive germline genome engineering in pigs. Nat Biomed Eng. 2021;5(2):134–43.
Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, et al. Consistent success in life‐supporting porcine cardiac xenotransplantation. Nature. 2018;564(7736):430–3.
Firl DJ, Markmann JF. Measuring success in pig to non‐human‐primate renal xenotransplantation: systematic review and comparative outcomes analysis of 1051 life‐sustaining NHP renal allo‐ and xeno‐transplants. Am J Transplant. 2022;22:1527–36.
Mohiuddin MM, Goerlich CE, Singh AK, Zhang T, Tatarov I, Lewis B, et al. Progressive genetic modifications of porcine cardiac xenografts extend survival to 9 months. Xenotransplantation. 2022;29:e12744.
Burdorf L, Laird CT, Harris DG, Connolly MR, Habibabady Z, Redding E, et al. Pig‐to‐baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments. Am J Transplant. 2022;22(1):28–45.
O'dwyer DN, Zhou X, Wilke CA, Xia M, Falkowski NR, Norman KC, et al. Lung dysbiosis, inflammation, and injury in hematopoietic cell transplantation. Am J Respir Crit Care Med. 2018;198(10):1312–21.
Cribbs SK, Uppal K, Li S, Jones DP, Huang L, Tipton L, et al. Correlation of the lung microbiota with metabolic profiles in bronchoalveolar lavage fluid in HIV infection. Microbiome. 2016;4:3.
Watzenboeck ML, Gorki AD, Quattrone F, Gawish R, Schwarz S, Lambers C, et al. Multi‐omics profiling predicts allograft function after lung transplantation. Eur Respir J. 2022;59(2):2003292.
Goddard AF, Staudinger BJ, Dowd SE, Joshi‐Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA‐based analyses of upper‐airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A. 2012;109(34):13769–74.
Tangaroonsanti A, Lee AS, Vela MF, Crowell MD, Erasmus D, Keller C, et al. Unilateral versus bilateral lung transplantation: do different esophageal risk factors predict chronic allograft failure?J Clin Gastroenterol. 2019;53(4):284–9.
Severyn CJ, Bhatt AS. With probiotics, resistance is not always futile. Cell Host Microbe. 2018;24(3):334–6.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 April 2022
Accepted: 03 August 2022
Published: 13 September 2022
Issue date: October 2022

Copyright

© 2022 The Authors.

Acknowledgements

None. There are no funders to report for this submission.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return