AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells

Sai Ma1,2Jiahong Tang1Guizhou Yuan1Ying Zhang1Yan Wang1Yuetong Wu3Cheng Zhu1Yimiao Wang4Shengfang Wu4Yue Lu2Shumeng Chi1Tinglu Song1Huanping Zhou3Manling Sui2Yujing Li1 ( )Qi Chen1 ( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MIIT Key Laboratory for Low-dimensional Quantum Structure and Devices, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Microstructure and Properties of Solids, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
School of Materials Science and Engineering, Peking University, Beijing 100871, China
Analysis and Testing Center, Jiangnan University, Wuxi 214122, China
Show Author Information

Abstract

Enhancing the lifetime of perovskite solar cells (PSCs) is one of the essential challenges for their industrialization. Although the external encapsulation protects the perovskite device from the erosion of moisture and oxygen under various harsh conditions. However, the perovskite devices still undergo static and dynamic thermal stress during thermal and thermal cycling aging, respectively, resulting in irreversible damage to the morphology, component, and phase of stacked materials. Herein, the viscoelastic polymer polyvinyl butyral (PVB) material is designed onto the surface of perovskite films to form flexible interface encapsulation. After PVB interface encapsulation, the surface modulus of perovskite films decreases by nearly 50%, and the interface stress range under the dynamic temperature field (−40 to 85 °C) drops from −42.5 to 64.8 MPa to −14.8 to 5.0 MPa. Besides, PVB forms chemical interactions with FA+ cations and Pb2+, and the macroscopic residual stress is regulated and defects are reduced of the PVB encapsulated perovskite film. As a result, the optimized device's efficiency increases from 22.21% to 23.11%. Additionally, after 1500 h of thermal treatment (85 °C), 1000 h of damp heat test (85 °C & 85% RH), and 250 cycles of thermal cycling test (−40 to 85 °C), the devices maintain 92.6%, 85.8%, and 96.1% of their initial efficiencies, respectively.

Electronic Supplementary Material

Download File(s)
eem-7-6-e12739_ESM.docx (1.8 MB)

References

[1]
National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html (accessed: December 2023).
[2]

Y. Zhao, F. Ma, Z. Qu, S. Yu, T. Shen, H.-X. Deng, X. Chu, X. Peng, Y. Yuan, X. Zhang, Science 2022, 377, 531.

[3]

J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y.-K. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, Nature 2021, 590, 587.

[4]

Y. Liu, S. Akin, A. Hinderhofer, F. T. Eickemeyer, H. Zhu, J. Y. Seo, J. Zhang, F. Schreiber, H. Zhang, S. M. Zakeeruddin, Angew. Chem. Int. Ed. 2020, 59, 15688.

[5]

M. Kim, J. Jeong, H. Lu, T. K. Lee, F. T. Eickemeyer, Y. Liu, I. W. Choi, S. J. Choi, Y. Jo, H.-B. Kim, Science 2022, 375, 302.

[6]

S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. Musiienko, D. Menzel, F. Lang, S. Keßler, I. Levine, D. Mantione, A. Al-Ashouri, M. S. Härtel, K. Xu, A. Cruz, J. Kurpiers, P. Wagner, H. Köbler, J. Li, A. Magomedov, D. Mecerreyes, E. Unger, A. Abate, M. Stolterfoht, B. Stannowski, R. Schlatmann, L. Korte, S. Albrecht, Science 2023, 381, 63.

[7]

X. Y. Chin, D. Turkay, J. A. Steele, S. Tabean, S. Eswara, M. Mensi, P. Fiala, C. M. Wolff, A. Paracchino, K. Artuk, D. Jacobs, Q. Guesnay, F. Sahli, G. Andreatta, M. Boccard, Q. Jeangros, C. Ballif, Science 2023, 381, 59.

[8]

M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, Joule 2019, 3, 2179.

[9]

Z. Huang, Y. Bai, X. Huang, J. Li, Y. Wu, Y. Chen, K. Li, X. Niu, N. Li, G. Liu, Y. Zhang, H. Zai, Q. Chen, T. Lei, L. Wang, H. Zhou, Nature 2023, 623, 531.

[10]

S. W. Lee, S. Bae, D. Kim, H. S. Lee, Adv. Mater. 2020, 32, 2002202.

[11]

N.-G. Park, K. Zhu, Nat. Rev. Mater. 2020, 5, 333.

[12]

S. Pescetelli, A. Agresti, S. Razza, H. Pazniak, L. Najafi, F. Bonaccorso, A. Di Carlo, Nano Energy 2022, 95, 107019.

[13]

Y. Y. Kim, S. M. Bang, J. Im, G. Kim, J. J. Yoo, E. Y. Park, S. Song, N. J. Jeon, J. Seo, Adv. Sci. 2023, 10, 2300728.

[14]

R. Wang, M. Mujahid, Y. Duan, Z. K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.

[15]

P. Cheng, Y. An, A. K.-Y. Jen, D. Lei, Adv. Mater. 2024, 36, 2309459.

[16]

T. Xu, Y. Chen, Q. Chen, Sci. China Phys. Mech. Astron. 2023, 66, 217305.

[17]

M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. D. Carlo, R. Cheacharoen, Y. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. D. Girolamo, M. Grätzel, A. Hagfeldt, E. Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y. Loo, J. M. Luther, C. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N. Park, M. O. Reese, F. D. Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S. M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Nat. Energy 2020, 5, 35.

[18]

Y. Ge, F. Ye, M. Xiao, H. Wang, C. Wang, J. Liang, X. Hu, H. Guan, H. Cui, W. Ke, Adv. Energy Mater. 2022, 12, 2200361.

[19]

S. Ma, G. Yuan, Y. Zhang, N. Yang, Y. Li, Q. Chen, Energ. Environ. Sci. 2022, 15, 13.

[20]

L. Xiang, F. Gao, Y. Cao, D. Li, Q. Liu, H. Liu, S. Li, Org. Electron. 2022, 106, 106515.

[21]

Y. Zhou, Y. Yin, X. Zuo, L. Wang, T.-D. Li, Y. Xue, A. Subramanian, Y. Fang, Y. Guo, Z. Yang, Chem. Mater. 2021, 33, 6120.

[22]

Y. Cheng, Q.-D. Yang, L. Ding, Sci. Bull. 2021, 66, 100.

[23]

J. Dou, Q. Chen, Energy Mater. Adv. 2022, 2022, 0002.

[24]

K. A. Bush, A. F. Palmstrom, Z. J. Yu, M. Boccard, R. Cheacharoen, J. P. Mailoa, D. P. McMeekin, R. L. Hoye, C. D. Bailie, T. Leijtens, Nat. Energy 2017, 2, 17009.

[25]

R. Cheacharoen, N. Rolston, D. Harwood, K. A. Bush, R. H. Dauskardt, M. D. McGehee, Energ. Environ. Sci. 2018, 11, 144.

[26]

R. Cheacharoen, C. C. Boyd, G. F. Burkhard, T. Leijtens, J. A. Raiford, K. A. Bush, S. F. Bent, M. D. McGehee, Sustain. Energy Fuel 2018, 2, 2398.

[27]

L. Shi, M. Zhang, Y. Cho, T. L. Young, D. Wang, H. Yi, J. Kim, S. Huang, A. W. Ho-Baillie, ACS Appl. Mater. Interfaces 2017, 9, 25073.

[28]
R. Cheacharoen, K. A. Bush, N. Rolston, D. Harwood, R. H. Dauskardt, M. D. McGehee, presented at 2018 IEEE 7th World Conf. Photovolt. Energy Conversion, WCPEC 2018 – A Jt. Conf. 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC, Piscataway, NJ, June 2018.
[29]
A. Rizzo, L. Ortolan, S. Murrone, L. Torto, M. Barbato, N. Wrachien, A. Cester, F. Matteocci, A. Di Carlo, presented at 2017 IEEE Int. Rel. Phys. Symp (IRPS), Monterey, CA, April 2017.
[30]

T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi, T. Negami, Adv. Mater. 2019, 31, 1806823.

[31]

J. He, T. Li, X. Liu, H. Su, Z. Ku, J. Zhong, F. Huang, Y. Peng, Y.-B. Cheng, Sol. Energy 2019, 188, 312.

[32]

N. Rolston, B. L. Watson, C. D. Bailie, M. D. McGehee, J. P. Bastos, R. Gehlhaar, J.-E. Kim, D. Vak, A. T. Mallajosyula, G. Gupta, Extreme Mech. Lett. 2016, 9, 353.

[33]

G. Yuan, W. Xie, Q. Song, S. Ma, Y. Ma, C. Shi, M. Xiao, F. Pei, X. Niu, Y. Zhang, J. Dou, C. Zhu, Y. Bai, Y. Wu, H. Wang, Q. Fan, Q. Chen, Adv. Mater. 2023, 35, 2211257.

[34]

D. B. Khadka, Y. Shirai, M. Yanagida, K. Uto, K. Miyano, Sol. Energy Mater. Sol. Cells 2022, 246, 111899.

[35]

L. Shi, M. Zhang, Y. Cho, T. L. Young, D. Wang, H. Yi, J. Kim, S. Huang, A. W. Ho-Baillie, A. C. S. Appl, Energy Mater. 2019, 2, 2358.

[36]

L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, Science 2020, 368, eaba2412.

[37]

C. Shi, Q. Song, H. Wang, S. Ma, C. Wang, X. Zhang, J. Dou, T. Song, P. Chen, H. Zhou, Q. Chen, Adv. Funct. Mater. 2022, 32, 2201193.

[38]

J. Zhao, Y. Deng, H. Wei, X. Zheng, Z. Yu, Y. Shao, J. E. Shield, J. Huang, Sci. Adv. 2017, 3, eaao5616.

[39]

E. Aydin, M. De Bastiani, S. De Wolf, Adv. Mater. 2019, 31, 1900428.

[40]

J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Nat. Commun. 2018, 9, 3021.

[41]

F. Li, Z. Shen, Y. Weng, Q. Lou, C. Chen, L. Shen, W. Guo, G. Li, Adv. Funct. Mater. 2020, 30, 2004933.

[42]

H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, Adv. Mater. 2019, 31, 1904408.

[43]

C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Nat. Commun. 2019, 10, 815.

[44]

Q. Tu, D. Kim, M. Shyikh, M. G. Kanatzidis, Matter 2021, 4, 2765.

[45]

G. Abadias, E. Chason, J. Keckes, M. Sebastiani, G. B. Thompson, E. Barthel, G. L. Doll, C. E. Murray, C. H. Stoessel, L. Martinu, J. Vac. Sci. Technol. A 2018, 36, 20801.

Energy & Environmental Materials
Cite this article:
Ma S, Tang J, Yuan G, et al. Resist Thermal Shock Through Viscoelastic Interface Encapsulation in Perovskite Solar Cells. Energy & Environmental Materials, 2024, 7(6). https://doi.org/10.1002/eem2.12739

25

Views

0

Downloads

4

Crossref

3

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 05 December 2023
Revised: 22 January 2024
Published: 12 February 2024
© 2024 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return