AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Growing Intact Membrane by Tuning Carbon Down to Ultrasmall 0.37 nm Microporous Structure for Confining Dissolution of Polysulfides Toward High-Performance Sodium–Sulfur Batteries

Chao Wu1,2Juan Li3Lifei Liu3Heng Zhang2Zhuo Zou2Wei Sun4Fangyin Dai1( )Changming Li2( )
State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
School of Materials and Energy, Southwest University, Chongqing 400715, China
College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
Show Author Information

Abstract

Room temperature sodium–sulfur (Na–S) batteries are severely hampered by dissolution of polysulfides into electrolytes. Herein, a facile approach is used to tune a biomass-derived carbon down to an ultrasmall 0.37 nm microporous structure for the first time as a cathode in sodium–sulfur batteries. This produced an intact uniform Na2S membrane to greatly confine the dissolution of polysulfides while realizing a direct solid phase conversion for complete reduction of sulfur to Na2S, which delivers a sulfur loading of 1 mg cm−2 (50 wt.%), an excellent rate capacity (933 mAh g−1 @ 0.1 A g−1 and 410 mAh g−1 @ 2 A g−1), long cycle performance (0.036% per cycle decay at 1 A g−1 after 1500 cycles), and a high energy density for 373 Wh kg−1 (0.1 A g−1) based on whole electrode weight (active sulfur loading + carbon), ranking the best among all reported plain carbon cathode-based room temperature sodium–sulfur batteries in terms of the cycle life and rate capacity. It is proposed that the solid Na2S produced in the ultrasmall pores (0.37 nm) can be squeezed out to grow an intact membrane on the electrode surface covering the outlet of the pores and greatly depressing the dissolution effect of polysulfides for the long cycle life. This work provides a green chemistry to recycle wastes for sustainable energies and sheds light on design of a unique pore structure to effectively block the dissolution of polysulfides for high-performance sodium–sulfur batteries.

Electronic Supplementary Material

Download File(s)
eem-6-4-e12634_ESM.docx (1.7 MB)

References

[1]

Y. X. Wang, B. W. Zhang, W. H. Lai, Y. F. Xu, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Energy Mater. 2017, 7, 1602829.

[2]

Y. X. Wang, W. H. Lai, Y. X. Wang, S. L. Chou, X. P. Ai, H. X. Yang, Y. L. Cao, Angew. Chem. Int. Ed. Engl. 2019, 58, 18324.

[3]

Y. X. Wang, W. H. Lai, S. L. Chou, H. K. Liu, S. X. Dou, Adv. Mater. 2020, 32, 1903952.

[4]

Y. Z. Wang, D. Zhou, B. Sun, X. Tang, M. Armand, G. X. Wang, Energy Environ. Sci. 2020, 13, 3848.

[5]

X. W. Yu, A. Manthiram, ChemElectroChem 2014, 1, 1275.

[6]

X. W. Yu, A. Manthiram, J. Phys. Chem. Lett. 2014, 11, 1943.

[7]

X. W. Yu, A. Manthiram, Chem. Eur. J. 2015, 21, 4233.

[8]

A. Manthiram, X. W. Yu, Small 2015, 11, 2108.

[9]

Y. X. Wang, J. P. Yang, W. H. Lai, S. L. Chou, Q. F. Gu, H. K. Liu, D. Y. Zhao, S. X. Dou, J. Am. Chem. Soc. 2016, 138, 16576.

[10]

R. Steudel, Y. Steudel, Chem. Eur. J. 2013, 19, 3162.

[11]

D. Liu, Z. Li, X. Li, Z. Cheng, L. Yuan, Y. Huang, ChemPhysChem 2019, 20, 3164.

[12]

B. W. Zhang, T. Sheng, Y. D. Liu, Y. X. Wang, L. Zhang, W. H. Lai, L. Wang, J. P. Yang, Q. F. Gu, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2018, 9, 4082.

[13]

T. T. Yang, W. Gao, B. S. Guo, R. M. Zhan, Q. J. Xu, H. He, S. J. Bao, X. Y. Li, Y. M. Chen, M. W. Xu, J. Mater. Chem. A 2019, 7, 150.

[14]

Y. X. Wang, Y. Y. Lai, J. Chu, Z. X. Yan, Y. X. Wang, H. X. Yang, Y. L. Cao, Adv. Mater. 2021, 33, 2100229.

[15]

Y. X. Wang, J. P. Yang, S. L. Chou, H. K. Liu, W. X. Zhang, D. Y. Zhao, S. X. Dou, Nat. Commun. 2015, 6, 8689.

[16]

B. S. Guo, W. Y. Du, T. T. Yang, J. H. Deng, D. Y. Liu, Y. R. Qi, J. Jiang, S. J. Bao, M. W. Xu, Adv. Sci. 2020, 7, 1902617.

[17]

Z. C. Yan, J. Xiao, W. H. Lai, L. Wang, F. Gebert, Y. X. Wang, Q. F. Gu, H. Liu, S. L. Chou, H. K. Liu, S. X. Dou, Nat. Commun. 2019, 10, 4793.

[18]

T. H. Hwang, D. S. Jung, J.-S. Kim, B. G. Kim, J. W. Choi, Nano Lett. 2013, 13, 4532.

[19]

H. L. Wan, W. Weng, F. D. Han, L. T. Cai, C. S. Wang, X. Y. Yao, Nano Today 2020, 33, 100860.

[20]

W. W. Tang, W. Zhong, Y. K. Wu, Y. R. Qi, B. S. Guo, D. Y. Liu, S. J. Bao, M. W. Xu, Chem. Eng. J. 2020, 395, 124978.

[21]

Q. Q. Lu, X. Y. Wang, J. Cao, C. Chen, K. Chen, Z. F. Zhao, Z. Q. Niu, J. Chen, Energy Storage Mater. 2017, 8, 77.

[22]

S. Xin, Y. X. Yin, Y. G. Guo, L. J. Wan, Adv. Mater. 2014, 26, 1261.

[23]

S. Xin, L. Gu, N. H. Zhao, Y. X. Yin, L. J. Zhou, Y. G. Guo, L. J. Wan, J. Am. Chem. Soc. 2012, 134, 18510.

[24]

R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A. P. Cohn, C. L. Pint, Nano Lett. 2017 17, 1863.

[25]

Z. C. Yan, Y. R. Liang, J. Xiao, W. H. Lai, W. L. Wang, Q. B. Xia, Y. X. Wang, Q. F. Gu, H. M. Lu, S. L. Chou, Y. Liu, H. K. Liu, S. X. Dou, Adv Mater. 2020, 32, 1906700.

[26]

B. W. Zhang, T. Sheng, Y. X. Wang, S. L. Chou, K. Davey, S. X. Dou, S. Z. Qiao, Angew Chem Int Edit. 2019, 58, 1484.

[27]

D. C. Martinez-Casillas, I. Mascorro-Gutierrez, C. E. Arreola-Ramos, H. I. Villafan-Vidales, C. A. Arancibia-Bulnes, V. H. Ramos-Sanchez, A. K. Cuentas-Gallegos, Carbon. 2019, 148, 403.

[28]

Y. M. Li, S. Y. Xu, X. Y. Wu, J. Z. Yu, Y. S. Wang, Y. S. Hu, H. Li, L. Q. Chen, X. J. Huang, J. Mater. Chem. A. 2015, 3, 71.

[29]

S. Y. Lu, M. Jin, Y. Zhang, Y. B. Niu, J. C. Gao, C. M. Li, Adv. Energy Mater. 2017, 1702545.

[30]

Z. Li, L. X. Yuan, Z. Q. Yi, Y. M. Sun, Y. Liu, Y. Jiang, Y. Shen, Y. Xin, Z. L. Zhang, Y. H. Huang, Adv Energy Mater. 2014, 4, 1301473.

[31]

W. X. Zhao, C. X. Guo, C. M. Li, J. Mater. Chem. A. 2017, 5, 19195.

[32]

Y. H. Zhang, C. Wu, S. Dai, L. F. Liu, H. Zhang, W. Shen, W. Sun, C. M. Li, Journal of Colloid and Interface Science 2022, 606, 817.

[33]

C. Wu, C. X. Guo, J. G. Wu, W. Ai, T. Yu, C. M. Li, J. Mater. Chem. A. 2018, 6, 8655.

[34]

C. Wu, Y. J. Lei, L. Simonelli, D. Tonti, A. Black, X. X. Lu, W. H. Lai, Y. X. Wang, S. L. Chou, H. K. Liu, G. X. Wang, S. X. Dou, Adv. Mater. 2022, 2108363.

[35]

K. Tang, L. Fu, R. J. White, L. Yu, M.-M. Titirici, M. Antonietti, J. Maier, Adv. Energy Mater. 2012, 2, 873.

[36]

Y. Cao, L. Xiao, M. L. Sushko, W. Wang, B. Schwenzer, J. Xiao, Z. Nie, L. V. Saraf, Z. Yang, J. Liu, Nano Lett. 2012, 12, 3783.

[37]

L. F. Xiao, Y. L. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard, J. Liu, Adv. Mater. 2012, 24, 1176.

[38]

G. Horvath, K. Kawazo, J. Chem. Eng. Japan 1983, 16, 473.

[39]

C. Malheiro, C. Miqueu, Fluid Phase Equilib. 2015, 404, 118.

Energy & Environmental Materials
Cite this article:
Wu C, Li J, Liu L, et al. Growing Intact Membrane by Tuning Carbon Down to Ultrasmall 0.37 nm Microporous Structure for Confining Dissolution of Polysulfides Toward High-Performance Sodium–Sulfur Batteries. Energy & Environmental Materials, 2023, 6(4). https://doi.org/10.1002/eem2.12634

44

Views

2

Downloads

11

Crossref

14

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 16 February 2023
Revised: 02 April 2023
Published: 03 April 2023
© 2023 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return