AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting

Jingwei Zhang1,2Yuchao Wang1Rongguo Song1( )Zongkui Kou3Daping He1,2( )
Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Show Author Information

Abstract

Herein, we report the design, fabrication, and performance of two wireless energy harvesting devices based on highly flexible graphene macroscopic films (FGMFs). We first demonstrate that benefiting from the high conductivity of up to 1 × 106 S m−1 and good resistive stability of FGMFs even under extensive bending, the FGMFs-based rectifying circuit (GRC) exhibits good flexibility and RF-to-DC efficiency of 53% at 2.1 GHz. Moreover, we further expand the application of FGMFs to a flexible wideband monopole rectenna and a 2.45 GHz wearable rectenna for harvesting wireless energy. The wideband rectenna at various bending conditions produces a maximum conversion efficiency of 52%, 46%, and 44% at the 5th Generation (5G) 2.1 GHz, Industrial Long-Term Evolution (LTE) 2.3 GHz, and Scientific Medical (ISM) 2.45 GHz, respectively. A 2.45 GHz GRC is optimized and integrated with an AMC-backed wearable antenna. The proposed 2.45 GHz wearable rectenna shows a maximum conversion efficiency of 55.7%. All the results indicate that the highly flexible graphene-film-based rectennas have great potential as a wireless power supplier for smart Internet of Things (IoT) applications.

Electronic Supplementary Material

Video
eem-7-2-e12548_ESM2.mp4
eem-7-2-e12548_ESM3.mp4
Download File(s)
eem-7-2-e12548_ESM1.docx (3.4 MB)

References

[1]

L. Catarinucci, D. D. Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, L. Tarricone, IEEE Internet Things J. 2015, 2, 515.

[2]

A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, IEEE Internet Things J. 2014, 1, 22.

[3]

X. Zhang, J. Grajal, J. L. Vazquezroy, U. Radhakrishna, X. Wang, W. Chern, L. Zhou, Y. Lin, P. Shen, X. Ji, Nature 2019, 566, 368.

[4]

S. P. Shen, C. Y. Chiu, R. D. Murch, IEEE Trans. Antennas Propag. 2018, 66, 644.

[5]

Y. L. Liu, K. M. Huang, Y. Yang, B. Zhang, IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1659.

[6]

C. Song, Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, Z. Fei, IEEE Trans. Ind. Electron. 2017, 64, 3950.

[7]

V. Kuhn, C. Lahuec, F. Seguin, C. Person, IEEE Trans. Microw. Theory Tech. 2015, 63, 1768.

[8]

G. Monti, L. Corchia, L. Tarricone, IEEE Trans. Antennas Propag. 2013, 61, 3869.

[9]

C. Song, Y. Huang, P. Carter, J. Zhou, S. Joseph, G. Li, IEEE Trans. Antennas Propag. 2018, 66, 3306.

[10]

J. Zhang, Y. Huang, P. Cao, Trans. Inst. Meas. Control. 2015, 37, 961.

[11]

S. Hemour, Y. Zhao, C. H. P. Lorenz, D. Houssameddine, Y. Gui, C. Hu, K. Wu, IEEE Trans. Microw. Theory Tech. 2014, 62, 965.

[12]

C. Song, P. Lu, S. Shen, IEEE Trans. Ind. Electron. 2020, 68, 8128.

[13]

P. Wu, S. Y. Huang, W. Zhou, Z. H. Ren, Z. Liu, K. Huang, C. Liu, IEEE Microw. Wirel. Compon. Lett. 2018, 28, 1116.

[14]

Y. Y. Shi, J. W. Jing, Y. Fan, L. Yang, J. F. Pang, M. Wang, Microw. Opt. Technol. Lett. 2018, 60, 2420.

[15]
A. Saffari, M. Hessar, S. Naderiparizi, J. R. Smith, Presented at 2019 IEEE Int. Conf. RFID (RFID), USA 2019, 4.
[16]
V. Talla, B. Kellogg, S. Gollakota, J. R. Smith, Presented at Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput. (UBICOMP), Hawaii 2017, 9.
[17]

W. Zhou, C. Liu, R. Song, X. Zeng, B.-W. Li, W. Xia, J. Zhang, G.-L. Huang, Z. P. Wu, D. He, Appl. Phys. Lett. 2019, 114, 113503.

[18]

D. Tang, Q. Wang, Z. Wang, Q. Liu, B. Zhang, D. He, Z. Wu, S. Mu, Sci. Bull. 2018, 63, 574.

[19]

X. Huang, T. Leng, X. Zhang, J. C. Chen, K. H. Chang, A. K. Geim, K. S. Novoselov, Z. Hu, Appl. Phys. Lett. 2015, 106, 203105.

[20]

S. Adami, P. Proynov, G. S. Hilton, G. Yang, C. Zhang, D. Zhu, Y. Li, S. P. Beeby, I. J. Craddock, B. H. Stark, IEEE Trans. Microw. Theory Tech. 2018, 66, 380.

[21]

J. Zhu, Z. Hu, C. Song, N. Yi, Z. Yu, Z. Liu, S. Liu, M. Wang, M. G. Dexheimer, J. Yang, H. Cheng, Mater. Today Phys. 2021, 18, 100377.

[22]

A. Eid, J. G. D. Hester, J. Costantine, Y. Tawk, A. H. Ramadan, M. M. Tentzeris, IEEE Trans. Antennas Propag. 2020, 68, 2621.

[23]

A. Scidà, S. Haque, E. Treossi, A. Robinson, S. Smerzi, S. Ravesi, S. Borini, V. Palermo, Mater. Today 2018, 21, 223.

[24]

K. Pan, Y. Fan, T. Leng, J. S. Li, Z. Xin, J. Zhang, L. Hao, J. C. Gallop, K. S. Novoselov, Z. Hu, Nat. Commun. 2018, DOI: 10.1038/s41467-018-07632-w.

[25]

R. Song, G.-L. Huang, C. Liu, N. Zhang, J. Zhang, C. Liu, Z. P. Wu, D. He, Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21692.

Energy & Environmental Materials
Article number: e12548
Cite this article:
Zhang J, Wang Y, Song R, et al. Highly Flexible Graphene-Film-Based Rectenna for Wireless Energy Harvesting. Energy & Environmental Materials, 2024, 7(2): e12548. https://doi.org/10.1002/eem2.12548

82

Views

7

Downloads

9

Crossref

5

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 20 May 2022
Revised: 07 October 2022
Published: 08 October 2022
© 2022 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return