AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Chlorofullerene C60Cl6 Enables Efficient and Stable Tin-Based Perovskite Solar Cells

Jingfu ChenChengbo Tian ( )Chao SunPanpan YangWenjing FengLingfang ZhengLiu YangEnlong HouJiefeng LuoLiqiang XieZhanhua Wei( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
Show Author Information

Abstract

Tin-based perovskite solar cells (TPSCs) have received great attention due to their eco-friendly properties and high theoretical efficiencies. However, the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance. Herein, a chlorofullerene, C60Cl6, with six chlorine attached to the C60 cage, is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film. The chemical interactions between C60Cl6 and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film. It is also revealed that the C60Cl6 located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films, especially the oxidation of Sn2+ to Sn4+. As a result, the C60Cl6-based device yields a remarkably improved device efficiency from 10.03% to 13.30% with enhanced stability. This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials.

Electronic Supplementary Material

Download File(s)
eem-7-1-e12529_ESM.docx (6.3 MB)

References

[1]

J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel, J. Y. Kim, Nature 2021, 592, 381.

[2]

H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444.

[3]

R. He, S. Q. Ren, C. Chen, Z. J. Yi, Y. Luo, H. G. Lai, W. W. Wang, G. G. Zeng, X. Hao, Y. Wang, J. Q. Zhang, C. L. Wang, L. L. Wu, F. Fu, D. W. Zhao, Energy Environ. Sci. 2021, 14, 5723.

[4]
National Renewable Energy Laboratory, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html (accessed: March 2022).
[5]

M. J. Kim, J. K. Jeong, H. Z. Lu, T. K. Lee, F. T. Eickemeyer, Y. H. Liu, Grätzel, D. S. Kim, Science 2022, 375, 302.

[6]

V. K. Ravi, B. Mondal, V. V. Nawale, A. Nag, ACS Omega 2020, 5, 29631.

[7]

J. Lee, G. W. Kim, M. Kim, S. A. Park, T. Park, Adv. Energy Mater. 2020, 10, 1902662.

[8]

M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S. G. Mhaisalkar, N. Mathews, Adv. Mater. 2014, 26, 7122.

[9]

X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Nat. Commun. 2020, 11, 1245.

[10]

T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar, J. Mater. Chem. A 2015, 3, 23829.

[11]

G. M. Paternò, N. Mishra, A. J. Barker, Z. Dang, G. Lanzani, L. Manna, A. Petrozza, Adv. Funct. Mater. 2018, 29, 1805299.

[12]

S. M. Jain, D. Phuyal, M. L. Davies, M. Li, B. Philippe, C. De Castro, Z. Qiu, J. Kim, T. Watson, W. C. Tsoi, O. Karis, H. Rensmo, G. Boschloo, T. Edvinsson, J. R. Durrant, Nano Energy 2018, 49, 614.

[13]

W. Ke, C. C. Stoumpos, M. G. Kanatzidis, Adv. Mater. 2019, 31, e1803230.

[14]

Z. Xiao, Z. Song, Y. Yan, Adv. Mater. 2019, 31, e1803792.

[15]

B. B. Yu, Z. Chen, Y. Zhu, Y. Wang, B. Han, G. Chen, X. Zhang, Z. Du, Z. He, Adv. Mater. 2021, 33, e2102055.

[16]

J. Liu, M. Ozaki, S. Yakumaru, T. Handa, R. Nishikubo, Y. Kanemitsu, A. Saeki, Y. Murata, R. Murdey, A. Wakamiya, Angew. Chem. Int. Ed. 2018, 57, 13221.

[17]

T. Imran, S. Rauf, H. Raza, L. Aziz, R. Chen, S. W. Liu, J. N. Wang, M. A. Ahmad, S. S. Zhang, Y. Q. Zhang, Z. H. Liu, W. Chen, Adv. Energy Mater. 2022, 12, 2200305.

[18]

J. P. Cao, F. Yan, Energy Environ. Sci. 2021, 14, 1286.

[19]

M. Li, F. M. Li, J. Gong, T. K. Zhang, F. Gao, W. H. Zhang, M. Z. Liu, Small. Struct. 2021, 3, 2100102.

[20]

C. Tian, C. Sun, J. Chen, P. Song, E. Hou, P. Xu, Y. Liang, P. Yang, J. Luo, L. Xie, Z. Wei, Nano 2022, 12, 532.

[21]

S. S. Lv, W. Y. Gao, Y. H. Liu, H. Dong, N. Sun, T. T. Niu, Y. D. Xia, Z. B. Wu, L. Song, C. X. Ran, L. Fu, Y. H. Chen, J. Energy Chem. 2022, 65, 371.

[22]

T. H. Wu, D. Y. Cui, X. Liu, X. H. Luo, H. Z. Su, H. Segawa, Y. Q. Zhang, Y. B. Wang, L. Y. Han, Sol. RRL 2021, 5, 2100034.

[23]

C. Pereyra, H. Xie, M. Lira-Cantu, J. Energy Chem. 2021, 60, 599.

[24]

M. H. Li, J. J. Zhou, L. G. Tan, Y. Liu, S. Y. Wang, C. F. Jiang, H. Li, X. Zhao, X. Y. Gao, W. Tress, L. M. Ding, C. Y. Yi, Energy Environ. Mater. 2022. DOI: 10.1002/eem2.12360.

[25]

V. G. V. Dutt, S. Akhil, R. Singh, M. Palabathuni, N. Mishra, J. Phys. Chem. C 2022, 126, 9502.

[26]

S. L. Zou, S. Q. Ren, Y. T. Jiang, Y. F. Huang, W. W. Wang, C. L. Wang, C. Chen, X. Hao, L. L. Wu, J. Q. Zhang, D. W. Zhao, Energy Environ. Mater. 2022. DOI: 10.1002/eem2.12465.

[27]

S. Akhil, V. G. V. Dutt, N. Mishra, Nanoscale Adv. 2021, 3, 2547.

[28]

H. Li, J. Shi, J. Deng, Z. Chen, Y. Li, W. Zhao, J. Wu, H. Wu, Y. Luo, D. Li, Q. Meng, Adv. Mater. 2020, 32, e1907396.

[29]

Z. Chen, M. Liu, Z. Li, T. Shi, Y. Yang, H. L. Yip, Y. Cao, iScience 2018, 9, 337.

[30]

M. E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda, A. Islam, ACS Energy Lett. 2018, 4, 278.

[31]

Y. Fang, C. Bi, D. Wang, J. Huang, ACS Energy Lett. 2017, 2, 782.

[32]

D. M. Guldi, M. Prato, Acc. Chem. Res. 2000, 33, 695.

[33]

Y. Liang, P. Song, H. Tian, C. Tian, W. Tian, Z. Nan, Y. Cai, P. Yang, C. Sun, J. Chen, L. Xie, Q. Zhang, Z. Wei, Adv. Funct. Mater. 2021, 32, 2110139.

[34]

C. Wu, K. Wang, Y. Yan, D. Yang, Y. Jiang, B. Chi, J. Liu, A. R. Esker, J. Rowe, A. J. Morris, M. Sanghadasa, S. Priya, Adv. Funct.Mater. 2019, 29, 1804419.

[35]

C. Kan, Z. Tang, Y. Yao, P. Hang, B. Li, Y. Wang, X. Sun, M. Lei, D. Yang, X. Yu, ACS Energy Lett. 2021, 6, 3864.

[36]

K. Liu, C. Tian, Y. Liang, Y. Luo, L. Xie, Z. Wei, Nano Res. 2022, 15, 7139.

[37]

H. Ban, Q. Sun, T. Zhang, H. Li, Y. Shen, M. Wang, Sol. RRL 2019, 4, 1900457.

[38]

W. Bao-Shan, M.-W. An, J.-M. Chen, D.-Q. Yun, S.-Y. Xie, L.-S. Zheng, Cell Rep. Phys. Sci. 2021, 2, 100646.

[39]

H. Wang, F. Li, P. Wang, R. Sun, W. Ma, M. Chen, W. Miao, D. Liu, T. Wang, Adv. Energy Mater. 2020, 10, 2000615.

[40]

J. Xia, C. Liang, H. Gu, S. Mei, S. Li, N. Zhang, S. Chen, Y. Cai, G. Xing, Energy Environ. Mater. 2022. DOI: 10.1002/eem2.12296.

[41]

X. Jiang, Z. Zang, Y. Zhou, H. Li, Q. Wei, Z. J. Ning, Acc. Chem. Res. 2021, 2, 210.

[42]

X. Jiang, H. Li, Q. Zhou, Q. Wei, M. Wei, L. Jiang, Z. Wang, Z. Peng, F. Wang, Z. Zang, K. Xu, Y. Hou, S. Teale, W. Zhou, R. Si, X. Gao, E. H. Sargent, Z. Ning, J. Am. Chem. Soc. 2021, 143, 10970.

[43]

X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.

[44]

W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. Seok, Science 2017, 356, 1376.

[45]

D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr1, Science 2015, 347, 6221.

[46]

A. Sussman, J. Appl. Phys. 1967, 38, 2738.

[47]

Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Nat. Photonics 2019, 13, 460.

[48]

L. Krückemeier, U. Rau, M. Stolterfoht, T. Kirchartz, Adv. Energy Mater. 2019, 10, 1902573.

[49]

F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Adv. Funct. Mater. 2016, 26, 3417.

[50]

X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. B. Wang, L. Y. Han, Energy Environ. Sci. 2020, 13, 2896.

[51]

L. Zhao, J. Gao, Y. L. Lin, Y. W. Yeh, K. M. Lee, N. Yao, Y. L. Loo, B. P. Rand, Adv. Mater. 2017, 29, 1605317.

[52]

J. Chmeliov, K. Elkhouly, R. Gegevičius, L. Jonušis, A. Devižis, A. Gelžinis, M. Franckevičius, I. Goldberg, J. Hofkens, P. Heremans, W. Qiu, V. Gulbinas, Adv. Opt. Mater. 2021, 9, 2101560.

[53]

K. Elkhouly, R. Gehlhaar, J. Genoe, P. Heremans, W. Qiu, Adv. Opt. Mater. 2020, 8, 2000941.

Energy & Environmental Materials
Article number: e12529
Cite this article:
Chen J, Tian C, Sun C, et al. Chlorofullerene C60Cl6 Enables Efficient and Stable Tin-Based Perovskite Solar Cells. Energy & Environmental Materials, 2024, 7(1): e12529. https://doi.org/10.1002/eem2.12529

79

Views

0

Downloads

14

Crossref

14

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 29 July 2022
Revised: 16 September 2022
Published: 18 September 2022
© 2022 The Authors.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return