AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

The Fluorination of Boron-Doped Graphene for CFx Cathode with Ultrahigh Energy Density

Kai Wang1Yiyu Feng1,3Lingchen Kong1Cong Peng2Yuanhang Hu1Weiyu Li1Yu Li1( )Wei Feng1,3 ( )
School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
Institute of Advanced Technology and Equipment, Beijing University of Chemical Technology, Beijing 100029, China
Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, China

Correction added on 12th August 2023, after first online publication: Ref. 8 has been updated with DOI link.

Show Author Information

Abstract

The enhancement of the fluorination degree of carbon fluorides (CFx) compounds is the most effective method to improve the energy densities of Li/CFx batteries because the specific capacity of CFx is proportional to the molar ratio of F to C atoms (F/C). In this study, B-doped graphene (BG) is prepared by using boric acid as the doping source and then the prepared BG is utilized as the starting material for the preparation of CFx. The B-doping enhances the F/C ratio of CFx without hindering the electrochemical activity of the C–F bond. During the fluorination process, B-containing functional groups are removed from the graphene lattice. This facilitates the formation of a defect-rich graphene matrix, which not only enhances the F/C ratio due to abundant perfluorinated groups at the defective edges but also serves as the active site for extra Li+ storage. The prepared CFx exhibits the maximum specific capacity of 1204 mAh g−1, which is 39.2% higher than that of CFx obtained directly from graphene oxide (without B-doping). An unprecedented energy density of 2974 Wh kg−1 is achieved for the as-prepared CFx samples, which is significantly higher than the theoretically calculated energy density of commercially available fluorinated graphite (2180 Wh kg−1). Therefore, this study demonstrates a great potential of B-doping to realize the ultrahigh energy density of CFx cathodes for practical applications.

Electronic Supplementary Material

Download File(s)
eem-6-4-e12437_ESM.pdf (2.5 MB)

References

[1]

T. Nakajima, R. Hagiwara, K. Moriya, N. Watanabe, J. Power Sources 1987, 20, 93.

[2]

W. Feng, P. Long, Y. Y. Feng, Y. Li, Adv. Sci. 2016, 3, 1500413.

[3]

R. Yazami, A. Hamwi, K. Guerin, Y. Ozawa, M. Dubois, J. Giraudet, F. Masin, Electrochem. Commun. 2007, 9, 1850.

[4]

F. C. Krause, J. P. Jones, S. C. Jones, J. Pasalic, K. J. Billings, W. C. West, M. C. Smart, R. V. Bugga, E. J. Brandon, M. Destephen, J. Electrochem. Soc. 2018, 165, A2312.

[5]

Y. Li, Y. Y. Feng, W. Feng, Electrochim. Acta 2013, 107, 343.

[6]

Y. Li, W. Feng, J. Power Sources 2015, 274, 1292.

[7]

H. Groult, C. M. Julien, A. Bahloul, S. Leclerc, E. Briot, A. Mauger, Electrochem. Commun. 2011, 13, 1074.

[8]

L. D. Sun, C. Peng, L. C. Kong, Y. Li, W. Feng, Energy Environ. Mater. 2021, https://doi.org/10.1002/eem2.12323.

[9]

L. C. Kong, Y. Li, W. Feng, Electrochem. Energy Rev. 2021, 4, 633.

[10]

Y. L. Zhu, L. J. Zhang, H. J. Zhao, Y. Fu, J. Mater. Chem. A 2017, 5, 796.

[11]

P. Meduri, H. H. Chen, J. Xiao, J. J. Martinez, T. Carlson, J. G. Zhang, Z. D. Deng, J. Mater. Chem. A 2013, 1, 7866.

[12]

Y. Yang, G. L. Lu, Y. J. Li, Z. Z. Liu, X. Y. Huang, ACS Appl. Mater. Inter. 2013, 5, 13478.

[13]

P. F. Fulvio, G. M. Veith, J. L. Adcock, S. S. Brown, R. T. Mayes, X. Q. Wang, S. M. Mahurin, B. K. Guo, X. G. Sun, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, S. Dai, J. Mater. Chem. A 2013, 1, 9414.

[14]

M. A. Reddy, B. Breitung, M. Fichtner, ACS Appl. Mater. Inter. 2013, 5, 11207.

[15]

P. Zhou, J. Weng, X. Liu, Y. Li, L. Wang, X. Wu, T. Zhou, J. Zhou, S. Zhuo, J. Power Sources 2019, 414, 210.

[16]

G. M. Zhong, H. X. Chen, X. K. Huang, H. J. Yue, C. Z. Lu, Front. Chem. 2018, 6, 50.

[17]

P. F. Fulvio, S. S. Brown, J. Adcock, R. T. Mayes, B. K. Guo, X. G. Sun, S. M. Mahurin, G. M. Veith, S. Dai, Chem. Mater. 2011, 23, 4420.

[18]

Q. Zhang, S. D’Astorg, P. Xiao, X. Zhang, L. Lu, J. Power Sources 2010, 195, 2914.

[19]

X. D. Yin, Y. Li, Y. Y. Feng, W. Feng, Synthetic. Met. 2016, 220, 560.

[20]

Y. Dai, S. D. Cai, L. J. Wu, W. J. Yang, J. Y. Xie, W. Wen, J. C. Zheng, Y. M. Zhu, J. Mater. Chem. A 2014, 2, 20896.

[21]

C. K. Pang, F. Ding, W. B. Sun, J. Q. Liu, M. M. Hao, Y. Wang, X. J. Liu, Q. Xu, Electrochim. Acta 2015, 174, 230.

[22]

S. T. Long, F. Chen, F. Ding, Y. Han, X. J. Liu, Q. Xu, J. Phys. Chem. C 2019, 123, 28048.

[23]

A. Fu, Y. Xiao, J. Jian, L. Huang, C. Tang, X. Chen, Y. Zou, J. Wang, Y. Yang, J. Zheng, ACS Appl. Mater. Inter. 2021, 13, 57470.

[24]

Y. Ahmad, M. Dubois, K. Guerin, A. Hamwi, W. Zhang, Carbon 2015, 94, 1061.

[25]

Y. Ahmad, M. Dubois, K. Guerin, A. Hamwi, E. Flahaut, J. Alloy Compd. 2017, 726, 852.

[26]

Y. Sato, K. Itoh, R. Hagiwara, T. Fukunaga, Y. Ito, Carbon 2004, 42, 3243.

[27]

S. Zhou, S. D. Sherpa, D. W. Hess, A. Bongiorno, J. Phys. Chem. C 2014, 118, 26402.

[28]

C. Peng, Y. Li, F. N. Yao, H. Y. Fu, R. X. Zhou, Y. Y. Feng, W. Feng, Carbon 2019, 153, 783.

[29]

R. X. Zhou, Y. Li, Y. Y. Feng, C. Peng, W. Feng, Compos. Commun. 2020, 21, 100396.

[30]

C. Peng, L. C. Kong, Y. Li, H. Y. Fu, L. D. Sun, Y. Y. Feng, W. Feng, Sci. China Mater. 2021, 64, 1367.

[31]

X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, Adv. Energy Mater. 2011, 1, 1079.

[32]

X. Zhao, C. M. Hayner, M. C. Kung, H. H. Kung, ACS Nano 2011, 5, 8739.

[33]

J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, J. C. Meyer, Phys. Rev. Lett. 2011, 106, 105505.

[34]

S. Agnoli, M. Favaro, J. Mater. Chem. A 2016, 4, 5002.

[35]

W. C. Tian, W. H. Li, W. B. Yu, X. H. Liu, Micromachines-Basel 2017, 8, 163.

[36]

Z. S. Wu, W. C. Ren, L. Xu, F. Li, H. M. Cheng, ACS Nano 2011, 5, 5463.

[37]

Q. Y. Xia, H. Yang, M. Wang, M. Yang, Q. B. Guo, L. M. Wan, H. Xia, Y. Yu, Adv. Energy Mater. 2017, 7, 1701336.

[38]

A. Urban, D. H. Seo, G. Ceder, npj Comput. Mater. 2016, 2, 16002.

[39]

Z. Q. Wang, D. Wang, Z. Y. Zou, T. Song, D. X. Ni, Z. Z. Li, X. C. Shao, W. J. Yin, Y. C. Wang, W. W. Luo, M. S. Wu, M. Avdeev, B. Xu, S. Q. Shi, C. Y. Ouyang, L. Q. Chen, Natl. Sci. Rev. 2020, 7, 1768.

[40]

S. M. Jung, E. K. Lee, M. Choi, D. Shin, I. Y. Jeon, J. M. Seo, H. Y. Jeong, N. Park, J. H. Oh, J. B. Baek, Angew. Chem. Int. Ed. 2014, 126, 2430.

[41]

Z. S. Wu, A. Winter, L. Chen, Y. Sun, A. Turchanin, X. L. Feng, K. Mullen, Adv. Mater. 2012, 24, 5130.

[42]

J. Ozaki, N. Kimura, T. Anahara, A. Oya, Carbon 2007, 45, 1847.

[43]

A. Vizintin, M. Lozinsek, R. K. Chellappan, D. Foix, A. Krainc, G. Mali, G. Drazic, B. Genorio, R. Dedryvere, R. Dominko, Chem. Mater. 2015, 27, 7070.

[44]

S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, R. S. Ruoff, Carbon 2011, 49, 3019.

[45]

P. A. Denis, C. P. Huelmo, Carbon 2015, 87, 106.

[46]

S. Ullah, P. A. Denis, F. Sato, ChemPhysChem 2017, 18, 1864.

[47]

P. A. Denis, ChemistrySelect 2016, 1, 5497.

[48]

Z. Y. Luo, X. Wang, D. W. Chen, Q. H. Chang, S. H. Xie, Z. S. Ma, W. X. Lei, J. A. Pan, Y. Pan, J. Y. Huang, ACS Appl. Mater. Inter. 2021, 13, 18809.

[49]

Z. H. Wu, X. D. Zhang, L. J. Deng, Y. S. Zhang, Z. Wang, Y. L. Shen, G. S. Shao, Energy Environ. Mater. 2022, 5, 285.

[50]

R. R. Nair, W. C. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. J. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, A. K. Geim, Small 2010, 6, 2877.

[51]

H. Q. Fang, C. Yu, T. L. Ma, J. S. Qiu, Chem. Commun. 2014, 50, 3328.

[52]

X. Y. Lian, Z. T. Sun, Q. Q. Mei, Y. Y. Yi, J. H. Zhou, M. H. Rummeli, J. Y. Sun, Energy Environ. Mater. 2022, 5, 344.

[53]

L. Tsetseris, S. T. Pantelides, Carbon 2014, 67, 58.

[54]

M. Wang, Y. Yang, Z. Z. Yang, L. Gu, Q. W. Chen, Y. Yu, Adv. Sci. 2017, 4, 1600468.

[55]

J. Q. Zhou, L. Jiang, C. Y. Shu, L. Kong, I. Ahmad, Y. N. Zhou, W. Tang, X. F. Sun, Y. P. Wu, Energy Environ. Mater. 2021, 4, 569.

[56]

J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2022, 5, 555.

[57]

C. H. Choi, M. W. Chung, H. C. Kwon, S. H. Park, S. I. Woo, J. Mater. Chem. A 2013, 1, 3694.

[58]

J. Tai, J. Hu, Z. Chen, H. Lu, RSC Adv. 2014, 4, 61437.

[59]

M. K. Rabchinskii, S. D. Saveliev, D. Y. Stolyarova, M. Brzhezinskaya, D. A. Kirilenko, M. V. Baidakova, S. A. Ryzhkov, V. V. Shnitov, V. V. Sysoev, P. N. Brunkov, Carbon 2021, 182, 593.

[60]

Y. Matsuo, J. Inamoto, H. Yamamoto, K. Matsumoto, R. Hagiwara, Electrochemistry 2020, 88, 437.

[61]

S. B. Jiang, P. Huang, J. C. Lu, Z. C. Liu, RSC Adv. 2021, 11, 25461.

[62]

X. X. Yang, G. J. Zhang, B. S. Bai, Y. Li, Y. X. Li, Y. Yang, X. Jian, X. W. Wang, Rare Metals 2021, 40, 1708.

[63]

K. Guerin, R. Yazami, A. Hamwi, Electrochem. Solid-State Lett. 2004, 7, A159.

[64]

M. Mar, M. Dubois, K. Guerin, N. Batisse, B. Simon, P. Bernard, Carbon 2019, 141, 6.

Energy & Environmental Materials
Cite this article:
Wang K, Feng Y, Kong L, et al. The Fluorination of Boron-Doped Graphene for CFx Cathode with Ultrahigh Energy Density. Energy & Environmental Materials, 2023, 6(4). https://doi.org/10.1002/eem2.12437

49

Views

4

Downloads

22

Crossref

29

Web of Science

28

Scopus

1

CSCD

Altmetrics

Received: 29 March 2022
Revised: 26 April 2022
Published: 01 May 2022
© 2022 Zhengzhou University.
Return