AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Create Rich Oxygen Defects of Unique Tubular Hierarchical Molybdenum Dioxide to Modulate Electron Transfer Rate for Superior High-Energy Metal-Ion Hybrid Capacitor

Heng Zhang1,2Jinggao Wu3Zhuo Zou5Youcun Bai4Chao Wu1,2Qingxin Zeng1,2Feng Liu1,2Wei Shen1,2Jian Jiang1,2 ( )Chang Ming Li1,2,5( )
Institute of Clean Energy and Advanced Materials, School of Materials and energy, Southwest University, Chongqing 400715, China
Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
Key Laboratory of Rare Earth Optoelectronic Materials & Devices, College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Show Author Information

Abstract

Metal-ion capacitors could merit advantages from both batteries and capacitors, but they need to overcome the severe restrictions from their sluggish reaction kinetics of the battery type electrode and low specific capacitance of capacitor type electrode for both high energy and power density. Herein, we use the Kirkendall effect for the first time to synthesize unique tubular hierarchical molybdenum dioxide with encapsulated nitrogen-doped carbon sheets while in situ realizing phosphorus-doping to create rich oxygen vacancies (P-MoO2-x@NP-C) as a sodium-ion electrode. Experimental and theoretical analysis confirm that the P-doping introduced oxygen defects can partially convert the high-bond-energy Mo–O to low-bond-energy Mo–P, resulting in a low oxidation state of molybdenum for enhanced surface reactivity and rapid reaction kinetics. The as-prepared P-MoO2-x@NP-C as an ion-battery electrode is further used to pair active N-doped carbon nanosheet (N-C-A) electrode for Na-ion hybrid capacitor, delivering excellent performance with an energy density of 140.3 Wh kg−1, a power density of 188.5 W kg−1 and long stable life in non-aqueous solution, which ranks the best among all reported MoOx-based hybrid capacitors. P-MoO2-x@NP-C is also used to fabricate a zinc-ion hybrid capacitor, also accomplishing a remarkable energy density of 43.8 Wh kg−1, a power density of 93.9 W kg−1, and a long stable life@2A g−1 of 32000 cycles in aqueous solutions, solidly verifying its universal significance. This work not only demonstrates an innovative approach to synthesize high-performance metal ion hybrid capacitor materials but also reveals certain scientific insights into electron transfer enhancement mechanisms.

Electronic Supplementary Material

Download File(s)
eem-6-3-e12377_ESM1.docx (5 MB)
eem-6-3-e12377_ESM10.tif (284 KB)
eem-6-3-e12377_ESM11.tif (264.1 KB)
eem-6-3-e12377_ESM12.tif (412.2 KB)
eem-6-3-e12377_ESM13.tif (288.8 KB)
eem-6-3-e12377_ESM14.tif (483.8 KB)
eem-6-3-e12377_ESM15.tif (1.7 MB)
eem-6-3-e12377_ESM16.tif (201.7 KB)
eem-6-3-e12377_ESM17.tif (485.1 KB)
eem-6-3-e12377_ESM18.tif (4 MB)
eem-6-3-e12377_ESM19.tif (321 KB)
eem-6-3-e12377_ESM2.tif (1.1 MB)
eem-6-3-e12377_ESM20.tif (479.7 KB)
eem-6-3-e12377_ESM21.tif (513.6 KB)
eem-6-3-e12377_ESM22.tif (1.6 MB)
eem-6-3-e12377_ESM23.tif (204.9 KB)
eem-6-3-e12377_ESM24.tif (291.4 KB)
eem-6-3-e12377_ESM25.tif (358.8 KB)
eem-6-3-e12377_ESM26.tif (468.1 KB)
eem-6-3-e12377_ESM27.tif (797.8 KB)
eem-6-3-e12377_ESM28.tif (794.6 KB)
eem-6-3-e12377_ESM29.tif (806.7 KB)
eem-6-3-e12377_ESM3.tif (5.3 MB)
eem-6-3-e12377_ESM30.tif (167.2 KB)
eem-6-3-e12377_ESM31.tif (145.8 KB)
eem-6-3-e12377_ESM32.tif (1.2 MB)
eem-6-3-e12377_ESM4.tif (222.3 KB)
eem-6-3-e12377_ESM5.tif (3.4 MB)
eem-6-3-e12377_ESM6.tif (108.7 KB)
eem-6-3-e12377_ESM7.tif (2.3 MB)
eem-6-3-e12377_ESM8.tif (141.2 KB)
eem-6-3-e12377_ESM9.tif (540.2 KB)

References

[1]

D. Larcher, J.-M. Tarascon, Nat. Chem. 2015, 7, 19.

[2]

B. Dunn, H. Kamath, J.-M. Tarascon, Science 2011, 334, 928.

[3]

C. F. Cheng, X. Li, K. W. Liu, F. Zou, W. Y. Tung, Y. F. Huang, X. H. Xia, C.-L. Wang, B. D. Vogt, Y. Zhu, Energy Storage Mater. 2019, 22, 265.

[4]

N. Nitta, F. Wu, J. T. Lee, G. Yushin, Mater. Today 2015, 18, 252.

[5]

P. Simon, Y. Gogotsi, Nat. Mater. 2009, 7, 845.

[6]

C. Guan, X. L. Li, Z. L. Wang, X. H. Cao, C. Soci, H. Zhang, H., J. Fan. Adv. Mater. 2012, 24, 4186.

[7]

J. Zhang, W. Lv, D. Q. Zheng, Q. H. Liang, D. W. Wang, F. Y. Kang, Q. H. Yang, Adv. Energy Mater. 2018, 8, 1702395.

[8]

J. Ding, H. L. Wang, Z. Li, K. Cui, D. Karpuzov, X. H. Tan, A. Kohandehghan, D. Mitln, Energy Environ. Sci. 2015, 8, 941.

[9]

B. J. Yang, J. T. Chen, S. L. Lei, R. S. Guo, H. X. Li, S. Q. Shi, X. B. Yan, Adv. Energy Mater. 2018, 8, 1702409.

[10]

S. Yi, L. Wang, X. Zhang, C. Li, W. J. Liu, K. Wang, X. Z. Sun, Y. N. Xu, Z. X. Yang, Y. Cao, J. Sun, Y. W. Ma, Sci. Bull. 2021, 66, 914.

[11]

Q. Shen, P. J. Jiang, H. C. He, Y. H. Feng, Y. Cai, D. N. Lei, M. Q. Cai, M. Zhang, Energy Environ. Mater 2021, 4, 638.

[12]

F. X. Yin, P. Yang, W. J. Yuan, A. Semencha, C. W. Zhang, P. Ji, G. K. Wang, J. Power Sources 2021, 488, 229452.

[13]

X. L. Deng, K. Y. Zou, R. Momen, P. Cai, J. Chen, H. S. Hou, G. Q. Zou, X. B. Ji, Sci. Bull. 2021, 66, 1858.

[14]

Y. Z. Fang, R. Hu, K. Zhu, K. Ye, J. Yan, G. L. Wang, D. X. Cao, Adv. Funct. Mater. 2020, 30, 2005663.

[15]

Y. Z. Fang, Y. Y. Zhang, C. X. Miao, K. Zhu, Y. Chen, F. Du, J. L. Yin, K. Ye, K. Cheng, J. Yan, G. L. Wang, D. X. Cao, Nano-Micro Lett. 2020, 12(1), 1.

[16]

Y. Z. Fang, R. Q. Lian, H. P. Li, Y. Zhang, Z. Gong, K. Zhu, K. Ye, J. Yan, G. L. Wang, Y. Gao, Y. J. Wei, D. X. Cao, ACS Nano 2020, 14, 8744.

[17]

Z. X. Mao, S. B. Zhao, J. Wang, Y. X. Zeng, X. H. Lu, Y. X. Tong, Mater. Res. Bull. 2018, 101, 140.

[18]

J. F. Ni, Y. Zhao, L. Li, L. Q. Mai, Nano Energy 2015, 11, 129.

[19]

Y. W. Wang, L. Yu, X. W. Lou, Angew. Chem. 2016, 128, 14888.

[20]

X. Zhao, H. E. Wang, Y. Yang, Z. G. Neale, R. C. Massé, J. Cao, W. Cai, J. H. Sui, G. Z. Cao, Energy Storage Mater. 2018, 12, 241.

[21]

Y. Q. Feng, H. Liu, F. W. Zhao, Y. Liu, J. Q. Li, X. X. Liu, Chem. Eng. J. 2021, 409, 128177.

[22]

W. J. Yang, L. J. Han, X. J. Liu, L. Hong, M. D. Wei, J. Colloid Interface Sci. 2021, 588, 804.

[23]

O. Hirsch, G. B. Zeng, L. Luo, M. Staniuk, P. M. Abdala, W. V. Beek, F. Rechberger, M. J. Suess, M. Niederberger, D. Koziej, Chem. Mater. 2014, 26, 4505.

[24]

J. L. Yang, S. X. Zhao, Y. M. Lu, X. T. Zeng, W. Lv, G. Z. Cao, Nano Energy 2020, 66, 104356.

[25]

Z. Ali, T. Y. Tang, X. X. Huang, Y. Z. Wang, M. Asif, Y. L. Hou, Energy Storage Mater. 2018, 13, 19.

[26]

Y. Zhao, W. L. Wu, J. X. Li, Z. C. Xu, L. H. Guan, Adv. Mater. 2014, 26, 5113.

[27]

A. M. Elshawy, C. Guan, X. Li, H. Zhang, Y. T. Hu, H. J. Wu, S. J. Pennycook, J. Wang, Nano Energy 2017, 39, 162.

[28]

S. D. Liu, Y. Yin, Y. Shen, K. S. Hui, Y. T. Chun, J. M. Kim, K. N. Hui, L. P. Zhang, S. C. Jun, Small 2020, 16, 1906458.

[29]

H. Tabassum, C. X. Zhi, T. Hussain, T. J. Qiu, W. Aftab, R. Q. Zou, Adv. Energy Mater. 2019, 9, 1901778.

[30]

M. L. Cao, L. M. Tao, X. W. Lv, Y. Bu, M. Li, H. Yin, M. Q. Zhu, Z. C. Zhong, Y. Shen, M. K. Wang, J. Power Sources 2018, 396, 327.

[31]

H. S. Kim, J. B. Cook, H. Lin, J. S. Ko, S. H. Tolbert, V. Ozolins, B. Dunn, Nat. Mater. 2017, 16, 454.

[32]

A. A. Ensafi, S. E. Moosavifard, B. Rezaei, S. K. Kaverlavani, J. Mater. Chem. A 2018, 6, 10497.

[33]

H. S. Hou, L. D. Shao, Y. Zhang, G. Q. Zou, J. Chen, X. B. Ji, Adv. Sci. 2017, 4, 1600243.

[34]

G. H. Qin, X. Y. Zhang, C. Y. Wang, J. Mater. Chem. A 2014, 2, 12449.

[35]

A. P. Wu, C. G. Tian, H. J. Yan, Y. Q. Jiao, Q. Yan, G. Y. Yang, H. G. Fu, Nanoscale 2016, 8, 11052.

[36]

Z. Pu, S. Y. Wei, Z. B. Chen, S. C. Mu, Appl. Catal. B 2016, 196, 193.

[37]

X. M. Dong, H. L. Jin, R. Y. Wang, J. J. Zhang, X. Feng, C. Z. Yan, S. Q. Chen, S. Wang, J. C. Wang, J. Lu. Adv. Energy Mater. 2018, 8, 1702695.

[38]

L. B. Huang, L. Zhao, Y. Zhang, Y. Y. Chen, Q. H. Zhang, H. Luo, X. Zhang, T. Tang, L. Gu, J. S. Hu, Adv. Energy Mater. 2018, 8, 1800734.

[39]

H. J. Tang, J. Y. Wang, H. J. Yin, H. J. Zhao, D. Wang, Z. Y. Tang, Adv. Mater. 2015, 27, 1117.

[40]

S. Chen, L. L. Zhao, J. Z. Ma, Y. Q. Wang, L. M. Dai, J. T. Zhang, Nano Energy 2019, 60, 536.

[41]

E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton, D. Mitlin, ACS Nano 2014, 8, 7115.

[42]

T. Zhai, L. M. Wan, S. Sun, Q. Chen, J. Sun, Q. Y. Xia, H. Xia, Adv. Mater. 2017, 29, 1604167.

[43]

X. Hu, Y. Li, G. Zeng, J. C. Jia, H. B. Zhan, Z. H. Wen, ACS Nano 2018, 12, 1592.

[44]

Y. J. Li, Y. Yang, J. H. Zhou, S. Y. Lin, Z. K. Xu, Y. Xing, Y. L. Zhang, J. R. Feng, Z. J. Mu, P. H. Li, Y. G. Chao, S. J. Guo, Energy Storage Mater. 2019, 23, 530.

[45]

H. A. Cha, H. M. Jeong, J. K. Kang, J. Mater. Chem. A 2014, 2, 5182.

[46]

K. Zhu, S. H. Guo, J. Yi, S. Y. Bai, Y. J. Wei, G. Chen, H. S. Zhou, J. Mater. Chem. A 2015, 3, 22012.

[47]

Y. F. Li, D. D. Wang, Q. Y. An, B. Ren, Y. G. Rong, Y. Yao, J. Mater. Chem. A 2016, 4, 5402.

[48]

Y. Zhang, C. W. Foster, C. E. Banks, L. D. Shao, H. S. Hou, G. Q. Zou, J. Chen, Z. D. Huang, X. B. Ji, Adv. Mater. 2016, 28, 9391.

[49]

D. W. Su, S. X. Dou, G. X. Wang, Chem. Mater. 2015, 27, 6022.

[50]

X. Zhao, H. E. Wang, X. X. Chen, J. Cao, Y. D. Zhao, Z. G. Neale, W. Cai, J. H. Sui, G. Z. Cao, Energy Storage Mater. 2018, 11, 161.

[51]

S. Patrice, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.

[52]

Y. S. Zhou, L. Chen, Y. T. Jiao, Z. L. Li, Y. M. Gao, Electrochim. Acta 2019, 299, 388.

[53]

S. F. Huang, Z. P. Li, B. Wang, J. J. Zhang, Z. Q. Peng, R. J. Qi, J. Wang, Y. F. Zhao, Adv. Funct. Mater. 2018, 28, 1706294.

[54]

W. L. Zhang, J. Ming, W. L. Zhao, X. C. Dong, M. N. Hedhili, P. M. F. J. Costa, H. N. Alshareef. Adv. Funct. Mater. 29, 1903641.

[55]

H. F. Liang, C. Xia, A. H. Emwas, D. H. Anjum, X. H. Miao, H. N. Alshareef, Nano Energy 2018, 49, 155.

[56]

X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater. 2017, 29, 1604437.

[57]

X. R. Wang, X. L. Li, L. Zhang, Y. Yoon, P. K. Weber, H. L. Wang, J. Guo, H., J. Dai. Adv. Sci. 2017, 4, 1600243.

[58]

Y. Y. Wen, B. Wang, C. C. Huang, L. Z. Wang, D. H. Jurcakova, Chem. Eur. J. 2015, 21, 80.

[59]

S. Liu, J. Q. Tian, L. Wang, Y. W. Zhang, X. Y. Qin, Y. L. Luo, A. M. Asiri, A. O. Al-Youbi, X. P. Sun, Adv. Mater. 2012, 24, 2037.

[60]

B. Kumar, M. Asadi, D. Pisasale, S. S. Ray, B. A. Rosen, R. Haasch, J. Abiade, A. L. Yarin, A. S. Khojin. Nat. Commun. 2013, DOI: 10.1038/ncomms3819.

[61]

D. Das, K. K. Nanda, Nano Energy 2016, 30, 303.

[62]

C. Wang, F. X. Wang, Z. C. Liu, Y. J. Zhao, Y. Liu, Q. Yue, H. W. Zhu, Y. H. Deng, Y. P. Wu, D. Y. Zhao, Nano Energy 2017, 41, 674.

[63]

Y. D. Agnese, P. L. Taberna, Y. Gogotsi, P. Simon, J. Phys. Chem. Lett. 2015, 6, 2305.

[64]

J. Ding, Z. Li, K. Cui, S. Boyer, D. Karpuzov, D. Mitlin, Nano Energy 2016, 23, 129.

[65]

H. W. Wang, Y. Zhang, H. X. Ang, Y. Q. Zhang, H. T. Tan, Y. F. Zhang, Y. Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan, Q. Y. Yan, Adv. Funct. Mater. 2016, 26, 3082.

[66]

M. Kim, E. Lim, S. Kim, C. S. Jo, J. Y. Chun, J. Lee. Adv. Funct. Mater. 2017, 27, 1603921.

[67]

C. T. Zhao, C. Yu, M. D. Zhang, Q. Sun, S. F. Li, M. N. Banis, X. T. Han, Nano Energy 2017, 41, 66.

[68]

V. Aravindan, N. Shubha, W. C. Ling, S. Madhavi, J. Mater. Chem. A 2013, 1, 6145.

[69]

L. P. Kong, C. F. Zhang, J. T. Wang, W. M. Qiao, L. C. Ling, D. H. Long, ACS Nano 2015, 9, 11200.

[70]

Z. Chen, V. Augustyn, X. L. Jia, Q. F. Xiao, B. Dunn, Y. F. Lu, ACS Nano 2012, 6, 4319.

[71]

Z. H. Pan, J. Yang, Q. C. Zhang, M. N. Liu, Y. T. Hu, Z. K. Kou, N. Liu, X. Yang, X. Y. Ding, H. Chen, J. Li, K. Zhang, Y. C. Qiu, Q. W. Li, J. Wang, Y. G. Zhang, Adv. Energy Mater. 2019, 9, 1802753.

[72]

S. L. Wang, Q. Wang, W. Zeng, M. Wang, L. M. Ruan, Y. N. Ma, Nano-Micro Lett. 2019, 11, 70.

[73]

Q. Chen, J. L. Jin, Z. K. Kou, C. Liao, Z. A. Liu, L. Zhou, J. Wang, L. Q. Mai, Small 2020, 16, 2000091.

[74]

F. Z. Cui, Z. C. Liu, D. L. Ma, L. L. Liu, T. Huang, P. P. Zhang, D. M. Tan, F. X. Wang, G. F. Jiang, Y. P. Wu, Chem. Eng. J. 2021, 405, 127038.

[75]

X. P. Ma, J. Y. Cheng, L. B. Dong, W. B. Liu, J. Mou, L. Zhao, J. J. Wang, D. Y. Ren, J. L. Wu, C. J. Xu, F. Y. Kang, Energy Storage Mater. 2019, 20, 335.

[76]

Y. C. Bai, H. Zhang, B. Xiang, J. Y. Hao, L. J. Yan, C. Zhu, Chem. Eng. J. 2021, 420, 130474.

[77]

M. H. Yu, N. Chandrasekhar, R. K. M. Raghupathy, K. H. Ly, H. Z. Zhang, E. Dmitrieva, C. L. Liang, X. H. Lu, T. D. Kuhne, H. Mirhosseini, I. M. Weidinger, X. L. Feng, J. Am. Chem. Soc. 2020, 142, 19570.

[78]

Y. C. Bai, H. Zhang, B. Xiang, X. Y. Liang, J. Y. Hao, C. Zhu, L. J. Yan, ACS Appl. Mater. Interfaces 2021, 13, 23230.

[79]

N. N. Liu, X. Wu, Y. Zhang, Y. Y. Yin, C. Z. Sun, Y. C. Mao, L. S. Fan, N. Q. Zhang, Adv. Sci. 2020, 7, 2000146.

[80]

Y. C. Bai, H. Zhang, B. Xiang, Y. Zhou, L. Dong, G. Y. Dong, J. Colloid Interface Sci. 2021, 597, 422.

[81]

W. Li, K. L. Wang, S. J. Cheng, K. Jiang, Adv. Energy Mater. 2019, 9, 1900993.

[82]

Z. Y. Cao, X. D. Zhu, D. X. Xu, P. Dong, M. O. L. Chee, X. J. Li, K. Y. Zhu, M. X. Ye, J. F. Shen, Energy Storage Mater. 2021, 36, 132.

Energy & Environmental Materials
Cite this article:
Zhang H, Wu J, Zou Z, et al. Create Rich Oxygen Defects of Unique Tubular Hierarchical Molybdenum Dioxide to Modulate Electron Transfer Rate for Superior High-Energy Metal-Ion Hybrid Capacitor. Energy & Environmental Materials, 2023, 6(3). https://doi.org/10.1002/eem2.12377

43

Views

2

Downloads

28

Crossref

30

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 18 November 2021
Revised: 19 February 2022
Published: 25 February 2022
© 2022 Zhengzhou University
Return