AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell

Shixuan Jin1Yiyu Feng1( )Jichao Jia2Fulai Zhao1Zijie Wu1Peng Long1Feng Li2Huitao Yu1Chi Yang2Qijing Liu2Baocai Zhang2Hao Song2( )Wei Feng1 ( )
School of Material Science and Engineering, Tianjin University, Tianjin 300350, China
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
Show Author Information

Abstract

Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells (MFCs). However, electrode materials currently suffer from a series of shortcomings that limit the output of MFCs, such as high intrinsic resistance, poor electrolyte wettability, and low microbial load capacity. Here, a three-dimensional (3D) nitrogen-doped multiwalled carbon nanotube/graphene (N-MWCNT/GA) composite aerogel is synthesized as the anode for MFCs. Comparing nitrogen-doped GA, MWCNT/GA, and N-MWCNT/GA, the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24 µm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance. Consequently, the hydrophilic surface of N-MWCNT can generate high charge mobility, enabling a high-power output performance of the MFC. In consequence, the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m−2 and 0.654 V, which are 1.83 times and 16.3% higher than those obtained with MWCNT/GA, respectively. These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures.

Electronic Supplementary Material

Download File(s)
eem-6-3-e12373_ESM.docx (4.6 MB)

References

[1]

Y. Sun, J. Wei, P. Liang, X. Huang, Bioresour. Technol. 2011, 102, 10886.

[2]

Y. Liu, Y. S. Fan, Z. M. Liu, Chem. Eng. J. 2019, 361, 416.

[3]

S. K. Chaudhuri, D. R. Lovley, Nat. Biotechnol. 2003, 21, 1229.

[4]

A. Okamoto, K. Hashimoto, K. H. Nealson, R. Nakamura, Proc. Natl. Acad. Sci. USA 2013, 110, 7856.

[5]

N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B. C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley, Nat. Nanotechnol. 2011, 6, 573.

[6]

Z. Ji, J. Y. Lee, Z. Pan, B. Jiang, B. Tian, Proc. Natl. Acad. Sci. USA 2009, 106, 7028.

[7]

G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Nature 2005, 435, 1098.

[8]

G. F. White, M. J. Edwards, L. Gomez-Perez, D. J. Richardson, J. N. Butt, T. A. Clarke, Adv. Microb. Physiol. 2016, 68, 87.

[9]

Y. Li, H. Y. Yang, J. Y. Shen, Y. Mu, H. Q. Yu, Bioresour. Technol. 2016, 202, 93.

[10]

M. E. Nielsen, C. E. Reimers, H. K. White, S. Sharma, P. R. Girguis, Energy Environ. Sci 2008, 1, 584.

[11]

Y. Qiao, S. J. Bao, C. M. Li, Energy Environ. Sci. 2010, 3, 544.

[12]

Y. Wang, C. Liu, S. Zhou, R. Hou, L. Zhou, F. Guan, R. Chen, Y. Yuan, Chem. Eng. J. 2021, 406, 126832.

[13]

R. B. Song, C. E. Zhao, L. P. Jiang, E. S. Abdel-Halim, J. R. Zhang, J. J. Zhu, ACS. Appl. Mater. Interfaces 2016, 8, 16170.

[14]

B. Cao, Z. Zhao, L. Peng, H. Y. Shiu, M. Ding, F. Song, X. Guan, C. K. Lee, J. Huang, D. Zhu, X. Fu, G. C. L. Wong, C. Liu, K. Nealson, P. S. Weiss, X. Duan, Y. Huang, Science 2021, 373, 1336.

[15]

S. Li, C. Cheng, A. Thomas, Adv. Mater. 2017, 29, 1602547.

[16]

F. Harnisch, U. Schroder, Chem. Soc. Rev. 2010, 39, 4433.

[17]

B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 2006, 40, 5181.

[18]

Q. Zhu, J. Hu, B. Liu, S. Hu, S. Liang, K. Xiao, J. Yang, H. Hou, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12173.

[19]

M. Li, S. Zhou, Chem. Eng. J. 2018, 339, 539.

[20]

R. Wang, M. Yan, H. Li, L. Zhang, B. Peng, J. Sun, D. Liu, S. Liu, Adv. Mater. 2018, 30, 1800618.

[21]

F. Yu, C. Wang, J. Ma, Electrochim. Acta 2018, 259, 1059.

[22]

L. H. Huang, X. F. Li, Y. P. Ren, X. H. Wang, RSC Adv. 2016, 6, 21001.

[23]

Y. C. Yong, Y. Y. Yu, X. Zhang, H. Song, Angew. Chem. Int. Ed. 2014, 53, 4480.

[24]

P. Zhang, Z. Li, S. Zhang, G. Shao, Energy Environ. Mater. 2018, 1, 5.

[25]

J. Luo, L. Yang, T. Li, L. Yang, X. Luo, J. C. Crittenden, Chem. Eng. J. 2019, 378, 122127.

[26]

J. Y. Chen, P. Xie, Z. P. Zhang, Chem. Eng. J. 2019, 361, 615.

[27]

J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12187.

[28]

L. Zou, Y. Qiao, X. S. Wu, C. M. Li, J. Power Sources 2016, 328, 143.

[29]

Y. Chen, X. Hao, G. Z. Chen, Energy Environ. Mater. 2020, 3, 247.

[30]

H. F. Cui, L. Du, P. B. Guo, B. Zhu, J. H. T. Luong, J. Power Sources 2015, 283, 46.

[31]

Y. Zhang, X. Chen, Y. Yuan, X. Lu, Z. Yang, Y. Wang, J. Sun, Int. J. Hydrog. Energy 2018, 43, 16240.

[32]

X. Tian, M. Zhou, C. Tan, M. Li, L. Liang, K. Li, P. Su, Chem. Eng. J. 2018, 348, 775.

[33]

Q. Zhang, C. Wang, Z. Xie, Z. Zhou, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12293.

[34]

B. Logan, S. Cheng, V. Watson, G. Estadt, Environ. Sci. Technol. 2007, 41, 3341.

[35]

S. You, M. Ma, W. Wang, D. Qi, X. Chen, J. Qu, N. Ren, Adv. Energy Mater. 2017, 7, 1601364.

[36]

J. Li, C. Yan, Y. Qiu, D. Chen, G. Liu, Y. Yu, Y. Feng, J. Power Sources 2020, 473, 228555.

[37]

L. Du, S. Cao, X. Zheng, L. Jiang, Z. Ren, J. Chen, Q. Xu, Macromol Mater. Eng. 2020, 305, 2000172.

[38]

W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, New J. Chem. 2016, 40, 3040.

[39]

H. P. Cong, X. C. Ren, P. Wang, S. H. Yu, ACS Nano 2012, 6, 2693.

[40]

Z. Han, Z. Tang, P. Li, G. Yang, Q. Zheng, J. Yang, Nanoscale 2013, 5, 5462.

[41]

C. Li, M. Luo, S. Zhou, H. He, J. Cao, J. Luo, Environ. Sci. Pollut. Res. Int. 2021, 28, 4262.

[42]

A. A. Yaqoob, M. N. M. Ibrahim, A. S. Yaakop, K. Umar, A. Ahmad, Chem. Eng. J. 2021, 417, 128052.

[43]

D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.

[44]

C. He, S. Qiu, S. Sun, Q. Zhang, G. Lin, S. Lei, X. Han, Y. Yang, Energy Environ. Mater. 2018, 1, 88.

[45]

H. Wang, Y. Feng, H. Yu, L. Dong, F. Zhai, J. Tang, J. Ge, W. Feng, Nano Energy 2021, 89, 106401.

[46]

J. Yuan, J. Zhu, R. Wang, Y. Deng, S. Zhang, C. Yao, Y. Li, X. Li, C. Xu, Chem. Eng. J. 2020, 398, 125592.

[47]

Q. Yao, Y. Gan, Z. Ma, X. Qian, S. Cai, Y. Zhao, L. Guan, W. Huang, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12217.

[48]

Y. Zhou, J. Niu, G. Zhang, M. Yu, F. Yang, Environ. Res. 2020, 184, 109283.

[49]

C. Shu, Z. Gan, Y. Hou, T. Zhu, J. Ma, W. Tang, Y. Wu, Energy Environ. Mater. 2020, 4, 81.

[50]

Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350.

[51]

H. Bai, N. Liu, L. Hao, P. He, C. Ma, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12235.

[52]

Y. Wang, C. He, W. Li, W. Zong, Z. Li, L. Yuan, G. Wang, Y. Mu, Chem. Eng. J. 2020, 399, 125848.

[53]

Z. Li, M. He, B. Bo, H. Wei, Y. Liu, H. Wen, Y. Liu, K. Zhang, P. Zhang, B. Li, Energy Environ. Mater. 2020, 4, 577.

[54]

B. Liang, K. Li, Y. Liu, X. Kang, Chem. Eng. J. 2019, 358, 1002.

[55]

Y. Zhang, J. Zhu, H. Ren, Y. Bi, L. Zhang, Chinese J. Chem. 2017, 35, 1069.

[56]

H. Zhao, D. Zhao, J. Ye, P. Wang, M. Chai, Z. Li, Energy Environ. Mater. 2021, 5, 313.

[57]

Y. Li, J. Liu, X. Chen, X. Yuan, N. Li, W. He, Y. Feng, Chem. Eng. J. 2020, 387, 125848.

[58]

B. Zhang, T. Wu, D. Sun, W. Chen, G. Li, Y. Li, Carbon 2019, 147, 312.

[59]

L. Yang, W. Deng, Y. Zhang, Y. Tan, M. Ma, Q. Xie, Biosens. Bioelectron. 2017, 91, 644.

[60]

Z. Yin, C. Cui, H. Chen, X. Duoni, W. Q. Yu, Small 2020, 16, 1902301.

[61]

Y. Yang, T. Liu, X. Zhu, F. Zhang, D. Ye, Q. Liao, Y. Li, Adv. Sci. 2016, 3, 1600097.

[62]

S. Zhao, Y. Li, H. Yin, Z. Liu, E. Luan, F. Zhao, Z. Tang, S. Liu, Sci. Adv. 2015, 1, 1500372.

[63]

T. Zhao, Z. Qiu, Y. Zhang, F. Hu, J. Zheng, C. Lin, J. Environ. Chem. Eng. 2021, 9, 105441.

[64]

Y. Qiao, G. Y. Wen, X. S. Wu, L. Zou, RSC Adv. 2015, 5, 58921.

Energy & Environmental Materials
Cite this article:
Jin S, Feng Y, Jia J, et al. Three-Dimensional N-Doped Carbon Nanotube/Graphene Composite Aerogel Anode to Develop High-Power Microbial Fuel Cell. Energy & Environmental Materials, 2023, 6(3). https://doi.org/10.1002/eem2.12373

73

Views

2

Downloads

33

Crossref

40

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 18 November 2021
Revised: 22 January 2022
Published: 21 February 2022
© 2022 Zhengzhou University.
Return