Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Optimizing the structure of electrode materials is one of the most effective strategies for designing high-power microbial fuel cells (MFCs). However, electrode materials currently suffer from a series of shortcomings that limit the output of MFCs, such as high intrinsic resistance, poor electrolyte wettability, and low microbial load capacity. Here, a three-dimensional (3D) nitrogen-doped multiwalled carbon nanotube/graphene (N-MWCNT/GA) composite aerogel is synthesized as the anode for MFCs. Comparing nitrogen-doped GA, MWCNT/GA, and N-MWCNT/GA, the macroporous hydrophilic N-MWCNT/GA electrode with an average pore size of 4.24 µm enables high-density loading of the microbes and facilitates extracellular electron transfer with low intrinsic resistance. Consequently, the hydrophilic surface of N-MWCNT can generate high charge mobility, enabling a high-power output performance of the MFC. In consequence, the MFC system based on N-MWCNT/GA anode exhibits a peak power density and output voltage of 2977.8 mW m−2 and 0.654 V, which are 1.83 times and 16.3% higher than those obtained with MWCNT/GA, respectively. These results demonstrate that 3D N-MWCNT/GA anodes can be developed for high-power MFCs in different environments by optimizing their chemical and microstructures.
Y. Sun, J. Wei, P. Liang, X. Huang, Bioresour. Technol. 2011, 102, 10886.
Y. Liu, Y. S. Fan, Z. M. Liu, Chem. Eng. J. 2019, 361, 416.
S. K. Chaudhuri, D. R. Lovley, Nat. Biotechnol. 2003, 21, 1229.
A. Okamoto, K. Hashimoto, K. H. Nealson, R. Nakamura, Proc. Natl. Acad. Sci. USA 2013, 110, 7856.
N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B. C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley, Nat. Nanotechnol. 2011, 6, 573.
Z. Ji, J. Y. Lee, Z. Pan, B. Jiang, B. Tian, Proc. Natl. Acad. Sci. USA 2009, 106, 7028.
G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Nature 2005, 435, 1098.
G. F. White, M. J. Edwards, L. Gomez-Perez, D. J. Richardson, J. N. Butt, T. A. Clarke, Adv. Microb. Physiol. 2016, 68, 87.
Y. Li, H. Y. Yang, J. Y. Shen, Y. Mu, H. Q. Yu, Bioresour. Technol. 2016, 202, 93.
M. E. Nielsen, C. E. Reimers, H. K. White, S. Sharma, P. R. Girguis, Energy Environ. Sci 2008, 1, 584.
Y. Qiao, S. J. Bao, C. M. Li, Energy Environ. Sci. 2010, 3, 544.
Y. Wang, C. Liu, S. Zhou, R. Hou, L. Zhou, F. Guan, R. Chen, Y. Yuan, Chem. Eng. J. 2021, 406, 126832.
R. B. Song, C. E. Zhao, L. P. Jiang, E. S. Abdel-Halim, J. R. Zhang, J. J. Zhu, ACS. Appl. Mater. Interfaces 2016, 8, 16170.
B. Cao, Z. Zhao, L. Peng, H. Y. Shiu, M. Ding, F. Song, X. Guan, C. K. Lee, J. Huang, D. Zhu, X. Fu, G. C. L. Wong, C. Liu, K. Nealson, P. S. Weiss, X. Duan, Y. Huang, Science 2021, 373, 1336.
S. Li, C. Cheng, A. Thomas, Adv. Mater. 2017, 29, 1602547.
F. Harnisch, U. Schroder, Chem. Soc. Rev. 2010, 39, 4433.
B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, Environ. Sci. Technol. 2006, 40, 5181.
Q. Zhu, J. Hu, B. Liu, S. Hu, S. Liang, K. Xiao, J. Yang, H. Hou, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12173.
M. Li, S. Zhou, Chem. Eng. J. 2018, 339, 539.
R. Wang, M. Yan, H. Li, L. Zhang, B. Peng, J. Sun, D. Liu, S. Liu, Adv. Mater. 2018, 30, 1800618.
F. Yu, C. Wang, J. Ma, Electrochim. Acta 2018, 259, 1059.
L. H. Huang, X. F. Li, Y. P. Ren, X. H. Wang, RSC Adv. 2016, 6, 21001.
Y. C. Yong, Y. Y. Yu, X. Zhang, H. Song, Angew. Chem. Int. Ed. 2014, 53, 4480.
P. Zhang, Z. Li, S. Zhang, G. Shao, Energy Environ. Mater. 2018, 1, 5.
J. Luo, L. Yang, T. Li, L. Yang, X. Luo, J. C. Crittenden, Chem. Eng. J. 2019, 378, 122127.
J. Y. Chen, P. Xie, Z. P. Zhang, Chem. Eng. J. 2019, 361, 615.
J. S. Yeon, Y. H. Ko, T. H. Park, H. Park, J. Kim, H. S. Park, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12187.
L. Zou, Y. Qiao, X. S. Wu, C. M. Li, J. Power Sources 2016, 328, 143.
Y. Chen, X. Hao, G. Z. Chen, Energy Environ. Mater. 2020, 3, 247.
H. F. Cui, L. Du, P. B. Guo, B. Zhu, J. H. T. Luong, J. Power Sources 2015, 283, 46.
Y. Zhang, X. Chen, Y. Yuan, X. Lu, Z. Yang, Y. Wang, J. Sun, Int. J. Hydrog. Energy 2018, 43, 16240.
X. Tian, M. Zhou, C. Tan, M. Li, L. Liang, K. Li, P. Su, Chem. Eng. J. 2018, 348, 775.
Q. Zhang, C. Wang, Z. Xie, Z. Zhou, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12293.
B. Logan, S. Cheng, V. Watson, G. Estadt, Environ. Sci. Technol. 2007, 41, 3341.
S. You, M. Ma, W. Wang, D. Qi, X. Chen, J. Qu, N. Ren, Adv. Energy Mater. 2017, 7, 1601364.
J. Li, C. Yan, Y. Qiu, D. Chen, G. Liu, Y. Yu, Y. Feng, J. Power Sources 2020, 473, 228555.
L. Du, S. Cao, X. Zheng, L. Jiang, Z. Ren, J. Chen, Q. Xu, Macromol Mater. Eng. 2020, 305, 2000172.
W. Wan, F. Zhang, S. Yu, R. Zhang, Y. Zhou, New J. Chem. 2016, 40, 3040.
H. P. Cong, X. C. Ren, P. Wang, S. H. Yu, ACS Nano 2012, 6, 2693.
Z. Han, Z. Tang, P. Li, G. Yang, Q. Zheng, J. Yang, Nanoscale 2013, 5, 5462.
C. Li, M. Luo, S. Zhou, H. He, J. Cao, J. Luo, Environ. Sci. Pollut. Res. Int. 2021, 28, 4262.
A. A. Yaqoob, M. N. M. Ibrahim, A. S. Yaakop, K. Umar, A. Ahmad, Chem. Eng. J. 2021, 417, 128052.
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
C. He, S. Qiu, S. Sun, Q. Zhang, G. Lin, S. Lei, X. Han, Y. Yang, Energy Environ. Mater. 2018, 1, 88.
H. Wang, Y. Feng, H. Yu, L. Dong, F. Zhai, J. Tang, J. Ge, W. Feng, Nano Energy 2021, 89, 106401.
J. Yuan, J. Zhu, R. Wang, Y. Deng, S. Zhang, C. Yao, Y. Li, X. Li, C. Xu, Chem. Eng. J. 2020, 398, 125592.
Q. Yao, Y. Gan, Z. Ma, X. Qian, S. Cai, Y. Zhao, L. Guan, W. Huang, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12217.
Y. Zhou, J. Niu, G. Zhang, M. Yu, F. Yang, Environ. Res. 2020, 184, 109283.
C. Shu, Z. Gan, Y. Hou, T. Zhu, J. Ma, W. Tang, Y. Wu, Energy Environ. Mater. 2020, 4, 81.
Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, X. H. Xia, ACS Nano 2011, 5, 4350.
H. Bai, N. Liu, L. Hao, P. He, C. Ma, R. Niu, J. Gong, T. Tang, Energy Environ. Mater. 2021, DOI: https://doi.org/10.1002/eem2.12235.
Y. Wang, C. He, W. Li, W. Zong, Z. Li, L. Yuan, G. Wang, Y. Mu, Chem. Eng. J. 2020, 399, 125848.
Z. Li, M. He, B. Bo, H. Wei, Y. Liu, H. Wen, Y. Liu, K. Zhang, P. Zhang, B. Li, Energy Environ. Mater. 2020, 4, 577.
B. Liang, K. Li, Y. Liu, X. Kang, Chem. Eng. J. 2019, 358, 1002.
Y. Zhang, J. Zhu, H. Ren, Y. Bi, L. Zhang, Chinese J. Chem. 2017, 35, 1069.
H. Zhao, D. Zhao, J. Ye, P. Wang, M. Chai, Z. Li, Energy Environ. Mater. 2021, 5, 313.
Y. Li, J. Liu, X. Chen, X. Yuan, N. Li, W. He, Y. Feng, Chem. Eng. J. 2020, 387, 125848.
B. Zhang, T. Wu, D. Sun, W. Chen, G. Li, Y. Li, Carbon 2019, 147, 312.
L. Yang, W. Deng, Y. Zhang, Y. Tan, M. Ma, Q. Xie, Biosens. Bioelectron. 2017, 91, 644.
Z. Yin, C. Cui, H. Chen, X. Duoni, W. Q. Yu, Small 2020, 16, 1902301.
Y. Yang, T. Liu, X. Zhu, F. Zhang, D. Ye, Q. Liao, Y. Li, Adv. Sci. 2016, 3, 1600097.
S. Zhao, Y. Li, H. Yin, Z. Liu, E. Luan, F. Zhao, Z. Tang, S. Liu, Sci. Adv. 2015, 1, 1500372.
T. Zhao, Z. Qiu, Y. Zhang, F. Hu, J. Zheng, C. Lin, J. Environ. Chem. Eng. 2021, 9, 105441.
Y. Qiao, G. Y. Wen, X. S. Wu, L. Zou, RSC Adv. 2015, 5, 58921.
73
Views
2
Downloads
33
Crossref
40
Web of Science
36
Scopus
0
CSCD
Altmetrics