AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Minimizing Carbon Content with Three-in-One Functionalized Nano Conductive Ceramics: Toward More Practical and Safer S Cathodes of Li-S Cells

Ning Li1Chang Sun1Jianhui Zhu2Shun Li1Yanlong Wang3Maowen Xu1Changming Li1,4( )Jian Jiang1 ( )
School of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, Chongqing 400715, China
School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
College of Chemistry and Chemical Engineering, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, and Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
Show Author Information

Abstract

Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity. However, such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions, causing the electrolyte overconsumption, specific energy decline, and even safety hazards for battery devices. To build better cathodes, we propose to substitute carbons by In-doped SnO2 (ITO) nano ceramics that own three-in-one functionalities: 1) using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio (~3%) in cathodes, elevating the electrode tap density and averting the electrolyte overuse; 2) polar ITO nanoclusters can serve as robust anchors toward Li polysulfide (LiPS) by electrostatic adsorption or chemical bond interactions; 3) they offer catalysis centers for liquid–solid phase conversions of S-based actives. Also, such ceramics are intrinsically nonflammable, preventing S cathodes away from thermal runaway or explosion. These merits entail our configured cathodes with high tap density (1.54 g cm−3), less electrolyte usage, good security for flame retardance, and decent Li-storage behaviors. With lean and LiNO3-free electrolyte, packed full cells exhibit excellent redox kinetics, suppressed LiPS shuttling, and excellent cyclability. This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.

Electronic Supplementary Material

Download File(s)
eem-6-3-e12354_ESM.docx (4.7 MB)

References

[1]

J. Chang, J. Shang, Y. Sun, L. K. Ono, D. Wang, Z. Ma, Q. Huang, D. Chen, G. Liu, Y. Cui, Y. Qi, Z. Zheng, Nat. Commun. 2018, 9, 4480.

[2]

W. Wu, J. Pu, J. Wang, Z. Shen, H. Tang, Z. Deng, X. Tao, F. Pan, H. Zhang, Adv. Energy Mater. 2018, 8, 1702373.

[3]

Z. L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S. P. Lau, Nat. Commun. 2018, 9, 4164.

[4]

L. Fan, M. Li, X. Li, W. Xiao, Z. Chen, J. Lu, Joule 2019, 3, 361.

[5]

R. Li, H. Peng, Q. Wu, X. Zhou, J. He, H. Shen, M. Yang, C. Li, Angew Chem. Int. Ed. 2020, 59, 12129.

[6]

Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang, Y. Wang, J. Zhang, Adv. Mater. 2019, 31, e1803800.

[7]

L. C. Zhang, L. Y. Chen, L. Wang, Adv. Eng. Mater. 2020, 22, 1901258.

[8]

A. Bhargav, J. He, A. Gupta, A. Manthiram, Joule 2020, 4, 1.

[9]

J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang, B. Mao, Q. Dong, Chem. 2020, 6, 1.

[10]

G. Zhou, K. Liu, Y. Fan, M. Yuan, B. Liu, W. Liu, F. Shi, Y. Liu, W. Chen, J. Lopez, D. Zhuo, J. Zhao, Y. Tsao, X. Huang, Q. Zhang, Y. Cui, ACS Cent. Sci. 2018, 4, 260.

[11]

P. Chen, Z. Wu, T. Guo, Y. Zhou, M. Liu, X. Xia, J. Sun, L. Lu, X. Ouyang, X. Wang, Y. Fu, J. Zhu, Adv. Mater. 2021, 33, 2007549.

[12]

Y. Ye, L.-Y. Chou, Y. Liu, H. Wang, H. K. Lee, W. Huang, J. Wan, K. Liu, G. Zhou, Y. Yang, A. Yang, X. Xiao, X. Gao, D. T. Boyle, H. Chen, W. Zhang, S. C. Kim, Y. Cui, Nat. Energy 2020, 5, 786.

[13]

H. Yang, J. Chen, J. Yang, Y. Nuli, J. Wang, Energy Stor. Mater. 2020, 31, 187.

[14]

S. H. Chung, A. Manthiram, Adv. Mater. 2017, 30, 1705951.

[15]

T. Lei, W. Chen, Y. Hu, W. Lv, X. Lv, Y. Yan, J. Huang, Y. Jiao, J. Chu, C. Yan, C. Wu, Q. Li, W. He, J. Xiong, Adv. Energy Mater. 2018, 8, 1802441.

[16]

J. Liu, L. Yuan, K. Yuan, Z. Li, Z. Hao, J. Xiang, Y. Huang, Nanoscale 2016, 8, 13638.

[17]

H. Ahn, Y. Kim, J. Bae, Y. K. Kim, W. B. Kim, Chem. Eng. J. 2020, 401, 126042.

[18]

X. T. Gao, Y. Xie, X. D. Zhu, K. N. Sun, X. M. Xie, Y. T. Liu, J. Y. Yu, B. Ding, Small 2018, 14, e1802443.

[19]

M. Liu, Q. Li, X. Qin, G. Liang, W. Han, D. Zhou, Y. B. He, B. Li, F. Kang, Small 2017, 13, 1602539.

[20]

X. Huang, T. Qiu, X. Zhang, L. Wang, B. Luo, L. Wang, Mater. Chem. Front. 2020, 4, 2517.

[21]

Z. Li, J. Zhang, X. W. Lou, Angew Chem. Int. Ed. 2015, 54, 12886.

[22]

X. Liu, J. Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 2017, 29, 1601759.

[23]

M. Wang, L. Fan, X. Wu, Y. Qiu, Y. Wang, N. Zhang, K. Sun, Chem. Eur. J. 2018, 6, 231.

[24]

Y. Liu, A. Palmieri, J. He, Y. Meng, N. Beauregard, S. L. Suib, W. E. Mustain, Sci. Rep. 2016, 328, 129082.

[25]

H. Xu, L. Wang, J. Zhong, T. Wang, J. Cao, Y. Wang, X. Li, H. Fei, J. Zhu, X. Duan, Energy Environ. Mater. 2020, 3, 177–185.

[26]

L. P. Hou, X. Q. Zhang, B. Q. Li, Q. Zhang, Mater. Today 2021, 10, 1369.

[27]

X. Qian, F. Li, X. Yang, L. Jin, S. Yao, X. Shen, T. Li, S. Qin, Int. J. Energy Res. 2021, 45, 8992–9005.

[28]

H. Yao, G. Zheng, P. C. Hsu, D. Kong, J. J. Cha, W. Li, Z. W. Seh, M. T. McDowell, K. Yan, Z. Liang, V. K. Narasimhan, Y. Cui, Nat. Commun. 2014, 5, 3943.

[29]

Y. T. Liu, S. Liu, G. R. Li, X. P. Gao, Adv. Mater. 2020, 33, 2003955.

[30]

L. Li, C. Xu, R. Chang, C. Yang, C. Jia, L. Wang, J. Song, Z. Li, F. Zhang, B. Fang, X. Wei, H. Wang, Q. Wu, Z. Chen, X. He, X. Feng, H. Wu, M. Ouyang, Energy Storage Mater. 2021, 40, 329.

[31]

P. Liu, Y. Wang, H. Hao, S. Basu, X. Feng, Y. Xu, J. A. Boscoboinik, J. Nanda, J. Watt, Adv. Mater. 2020, 32, 2002908.

[32]

Z. Liu, Q. Hu, S. Guo, L. Yu, X. Hu, Adv. Mater. 2021, 33, 2008088.

[33]

M. Wang, H. Yang, K. Shen, H. Xu, W. Wang, Z. Yang, L. Zhang, J. Chen, Y. Huang, M. Chen, D. Mitlin, X. Li, Small Methods 2020, 4, 200353.

[34]

Z. Shen, M. Cao, Z. Zhang, J. Pu, C. Zhong, J. Li, H. Ma, F. Li, J. Zhu, F. Pan, H. Zhang, Adv. Funct. Mater. 2019, 30, 1906661.

[35]

W. X. Hua, H. Li, C. Pei, J. Y. Xia, Y. F. Sun, C. Zhang, W. Lv, Y. Tao, Y. Jiao, B. S. Zhang, S. Z. Qiao, Y. Wan, Q. H. Yang, Adv. Mater. 2021, 33, 2101006.

[36]

W. Sun, C. Liu, Y. Li, S. Luo, S. Liu, X. Hong, K. Xie, Y. Liu, X. Tan, C. Zheng, ACS Nano 2019, 13, 12137.

[37]

Z. Sun, S. Vijay, H. H. Heenen, A. Y. S. Eng, W. Tu, Y. Zhao, S. W. Koh, P. Gao, Z. W. Seh, K. Chan, H. Li, Adv. Energy Mater. 2020, 10, 1904010.

[38]

F. Pei, S. Dai, B. Guo, H. Xie, C. Zhao, J. Cui, X. Fang, C. Chen, N. Zheng, Energy Environ. Sci. 2021, 14, 975.

[39]

J. Chen, H. Zhang, H. Yang, J. Lei, A. Naveed, J. Yang, Y. Nuli, J. Wang, Energy Storage Mater. 2020, 27, 307.

[40]

T. H. Ma, L. Sun, C. Xu, Y. F. Chen, J. Alloys Compd. 2011, 509, 9733.

[41]

W. Chen, T. Y. Lei, T. Qian, W. Q. Lv, W. D. He, C. Y. Wu, X. J. Liu, J. Liu, B. Chen, C. L. Yan, J. Xiong, Adv. Energy Mater. 2018, 8, 1702889.

[42]

Q. Zhang, P. Y. Chen, C. Yan, P. Chen, R. Zhang, Y. X. Yao, H. J. Peng, L. T. Yan, S. Kaskel, Angew Chem. Int. Ed. 2021, 60, 18031.

[43]

T. Meng, J. Gao, J. Zhu, N. Li, M. Xu, C. M. Li, J. Jiang, J. Mater, Chem. A 2020, 8, 11976.

[44]

Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu, G. Zou, H. Hou, W. Wei, L. Chen, X. Ji, Nano Energy 2021, 87, 106212.

[45]

R. Xu, X. Shen, X.-X. Ma, C. Yan, X.-Q. Zhang, X. Chen, J.-F. Ding, J. Q. Huang, Angew Chem. Int. Ed. 2020, 60, 4215.

[46]

J. H. Um, S. H. Yu, Adv. Energy Mater. 2020, 3, 2003004.

Energy & Environmental Materials
Cite this article:
Li N, Sun C, Zhu J, et al. Minimizing Carbon Content with Three-in-One Functionalized Nano Conductive Ceramics: Toward More Practical and Safer S Cathodes of Li-S Cells. Energy & Environmental Materials, 2023, 6(3). https://doi.org/10.1002/eem2.12354

43

Views

2

Downloads

12

Crossref

10

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 10 November 2021
Revised: 30 December 2021
Published: 14 January 2022
© 2022 Zhengzhou University
Return