AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review

Defective/Doped Graphene-Based Materials as Cathodes for Metal–Air Batteries

Qinming Zhang1Chengyi Wang1Zhaojun Xie1( )Zhen Zhou2( )
School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Nankai University, Tianjin 300350, China
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
Show Author Information

Abstract

Graphene, as a proof-of-concept two-dimensional material, has proven to have excellent physical and chemical properties. Its derivatives, such as defective or doped graphene, are also applied as catalytic materials for metal–air batteries (MABs). MABs have been recognized as possible candidates for new-generation energy storage systems due to their ultra-high theoretical energy density. So far, graphene and its derivatives with optimized structures have been widely explored to improve the electrochemical performance in MABs. Generally speaking, perfect graphene crystalline is inert for many catalytic processes, while defects and heteroatoms can endow graphene with high activity for many electrocatalytic reactions. Under this circumstance, recent progress is summarized for defective/doped graphene as air cathodes in aqueous or organic MABs, which are actually different electrochemical systems with distinct requirements for air cathodes. Also, the relationship is clarified between graphene defects/doping and electrocatalytic mechanisms that can be the guidance for catalyst design. Future directions are also prospected for the development of graphene-based MAB cathodes.

References

[1]

F. Cheng, J. Chen, Chem. Soc. Rev. 2012, 41, 2172.

[2]

J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee, J. Cho, Adv. Energy Mater. 2011, 1, 34.

[3]

T. Zhang, Z. Tao, J. Chen, Mater. Horiz. 2014, 1, 196.

[4]

X. F. Lu, S. L. Zhang, E. Shangguan, P. Zhang, S. Gao, X. W. Lou, Adv. Sci. 2020, 7, 2001178.

[5]

P. Tan, B. Chen, H. Xu, H. Zhang, W. Cai, M. Ni, M. Liu, Z. Shao, Energy Environ. Sci. 2017, 10, 2056.

[6]

Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei, Z. Zhou, Angew. Chem. Int. Ed. 2015, 54, 6550.

[7]

K. Chen, G. Huang, J.-L. Ma, J. Wang, D.-Y. Yang, X.-Y. Yang, Y. Yu, X.-B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 16661.

[8]

X. Han, X. Li, J. White, C. Zhong, Y. Deng, W. Hu, T. Ma, Adv. Energy Mater. 2018, 8, 1801396.

[9]

P. Wang, L. Wan, Y. Lin, B. Wang, Electrochim. Acta 2019, 320, 134564.

[10]

Y. Gao, Z. Xiao, D. Kong, R. Iqbal, Q.-H. Yang, L. Zhi, Nano Energy 2019, 64, 103879.

[11]

C. Tran, J. Kafle, X.-Q. Yang, D. Qu, Carbon 2011, 49, 1266.

[12]

J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett. 2011, 11, 5071.

[13]

Z. Zhang, J. Bao, C. He, Y. Chen, J. Wei, Z. Zhou, Adv. Funct. Mater. 2014, 24, 6826.

[14]

B. Sun, B. Wang, D. Su, L. Xiao, H. Ahn, G. Wang, Carbon 2012, 50, 727.

[15]

Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan, K. Qi, H. Liu, B. Y. Xia, Adv. Funct. Mater. 2019, 30, 1906081.

[16]

Y. Jin, F. Chen, Electrochim. Acta 2015, 158, 437.

[17]

W.-M. Liu, W.-W. Yin, F. Ding, L. Sang, Z.-W. Fu, Electrochem. Commun. 2014, 45, 87.

[18]

K. Liao, T. Zhang, Y. Wang, F. Li, Z. Jian, H. Yu, H. Zhou, ChemSusChem 2015, 8, 1429.

[19]

B. G. Kim, C. Jo, J. Shin, Y. Mun, J. Lee, J. W. Choi, ACS Nano 2017, 11, 1736.

[20]

B. Wu, H. Zhang, W. Zhou, M. Wang, X. Li, H. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 23182.

[21]

J. Zhang, Y. Zhao, X. Zhao, Z. Liu, W. Chen, Sci. Rep. 2014, 4, 6005.

[22]

Q. Hong, H. Lu, Sci. Rep. 2017, 7, 3378.

[23]

Q. C. Liu, J. J. Xu, D. Xu, X. B. Zhang, Nat. Commun. 2015, 6, 7892.

[24]

T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao, M. Cao, J. Mater. Chem. A 2017, 5, 7001.

[25]

J. Liu, C. Wang, H. Sun, H. Wang, F. Rong, L. He, Y. Lou, S. Zhang, Z. Zhang, M. Du, Appl. Catal. B 2020, 279, 119407.

[26]

C. Tang, B. Wang, H. F. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1703185.

[27]

Y. Yang, W. Yin, S. Wu, X. Yang, W. Xia, Y. Shen, Y. Huang, A. Cao, Q. Yuan, ACS Nano 2016, 10, 1240.

[28]

S. K. Singh, V. M. Dhavale, S. Kurungot, ACS Appl. Mater. Interfaces 2015, 7, 21138.

[29]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. USA 2005, 102, 10451.

[30]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.

[31]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.

[32]

G. Kucinskis, G. Bajars, J. Kleperis, J. Power Sources 2013, 240, 66.

[33]

C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863.

[34]

E. Yoo, H. Zhou, ACS Nano 2011, 5, 3020.

[35]

G. Fu, X. Yan, Y. Chen, L. Xu, D. Sun, J. M. Lee, Y. Tang, Adv. Mater. 2018, 30, 1704609.

[36]

J. Chen, B. Ni, J. Hu, Z. Wu, W. Jin, J. Mater. Chem. A 2019, 7, 22507.

[37]

C. Punckt, M. A. Pope, J. Liu, Y. Lin, I. A. Aksay, Electroanalysis 2010, 22, 2834.

[38]

G. Fazio, L. Ferrighi, D. Perilli, C. Di Valentin, Int. J. Quantum Chem. 2016, 116, 1623.

[39]

S. Hou, R. M. Kluge, R. W. Haid, E. L. Gubanova, S. A. Watzele, A. S. Bandarenka, B. Garlyyev, ChemElectroChem 2021, 8, 3433.

[40]

H. Cui, Y. Guo, Z. Zhou, Small 2021, 17, 2005255.

[41]

J. Fu, R. Liang, G. Liu, A. Yu, Z. Bai, L. Yang, Z. Chen, Adv. Mater. 2019, 31, 1805230.

[42]

X. Tong, Q. Wei, X. Zhan, G. Zhang, S. Sun, Catalysts 2016, 7, 1.

[43]

J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Carbon 2020, 165, 434.

[44]

Y. Arafat, M. R. Azhar, Y. Zhong, M. O. Tadé, Z. Shao, Mater. Res. Bull. 2021, 140, 111315.

[45]

J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 2014, 10, 3480.

[46]

J. Zhang, Z. Xia, L. Dai, Sci. Adv. 2015, 1, e1500564.

[47]

Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Energy Storage Mater. 2020, 27, 478.

[48]

J. G. Smith, J. Naruse, H. Hiramatsu, D. J. Siegel, Chem. Mater. 2016, 28, 1390.

[49]

Q. Dong, X. Yao, J. Luo, X. Zhang, H. Hwang, D. Wang, Chem. Commun. 2016, 52, 13753.

[50]

M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, J. Sahari, J. Ind. Eng. Chem. 2015, 32, 1.

[51]

Y. Liu, J. Li, W. Li, Y. Li, F. Zhan, H. Tang, Q. Chen, Int. J. Hydrogen Energy 2016, 41, 10354.

[52]

X. Cai, L. Lai, J. Lin, Z. Shen, Mater. Horiz. 2017, 4, 945.

[53]

H.-F. Wang, Q. Xu, Matter 2019, 1, 565.

[54]

X. Chen, Z. Zhou, H. E. Karahan, Q. Shao, L. Wei, Y. Chen, Small 2018, 14, 1801929.

[55]

M. Kar, T. J. Simons, M. Forsyth, D. R. MacFarlane, Phys. Chem. Chem. Phys. 2014, 16, 18658.

[56]

K. W. Semkow, A. F. Sammells, J. Electrochem. Soc. 1987, 134, 2084.

[57]

K. Abraham, Z. Jiang, J. Electrochem. Soc 1996, 143, 1.

[58]

J. P. Zheng, R. Y. Liang, M. Hendrickson, E. J. Plichta, J. Electrochem. Soc. 2008, 155, A432.

[59]

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2011, 11, 19.

[60]

Z. Lyu, Y. Zhou, W. Dai, X. Cui, M. Lai, L. Wang, F. Huo, W. Huang, Z. Hu, W. Chen, Chem. Soc. Rev. 2017, 46, 6046.

[61]

C. Xia, M. Waletzko, L. Chen, K. Peppler, P. J. Klar, J. Janek, ACS Appl. Mater. Interfaces 2014, 6, 12083.

[62]

N. B. Aetukuri, B. D. McCloskey, J. M. Garcia, L. E. Krupp, V. Viswanathan, A. C. Luntz, Nat. Chem. 2015, 7, 50.

[63]

H. Yadegari, Q. Sun, X. Sun, Adv. Mater. 2016, 28, 7065.

[64]

X. Lin, Q. Sun, H. Yadegari, X. Yang, Y. Zhao, C. Wang, J. Liang, A. Koo, R. Li, X. Sun, Adv. Funct. Mater. 2018, 28, 1801904.

[65]

X. Ren, Y. Wu, J. Am. Chem. Soc. 2013, 135, 2923.

[66]

W.-J. Kwak, L. Luo, H.-G. Jung, C. Wang, Y.-K. Sun, ACS Energy Lett. 2018, 3, 393.

[67]

S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun, Y. G. Zhu, H. Li, H. Wang, Y. Shao-Horn, X. Sun, M. Gu, ACS Nano 2020, 14, 3669.

[68]

W. Wang, N.-C. Lai, Z. Liang, Y. Wang, Y.-C. Lu, Angew. Chem., Int. Ed. 2018, 57, 5042.

[69]

X. Liu, L. Jiang, Z. Zhu, S. Chen, Y. Dou, P. Liu, Y. Wang, H. Yin, Z. Tang, H. Zhao, Mater. Today. Energy 2019, 11, 24.

[70]

P. Bhauriyal, K. S. Rawat, G. Bhattacharyya, P. Garg, B. Pathak, Chem. Asian J. 2018, 13, 3198.

[71]

C.-S. Li, Y. Sun, F. Gebert, S.-L. Chou, Adv. Energy Mater. 2017, 7, 1700869.

[72]

J. G. Smith, J. Naruse, H. Hiramatsu, D. J. Siegel, Chem. Mater. 2017, 29, 3152.

[73]

G. Vardar, E. G. Nelson, J. G. Smith, J. Naruse, H. Hiramatsu, B. M. Bartlett, A. E. S. Sleightholme, D. J. Siegel, C. W. Monroe, Chem. Mater. 2015, 27, 7564.

[74]

Y. Liu, L. Wang, L. Cao, C. Shang, Z. Wang, H. Wang, L. He, J. Yang, H. Cheng, J. Li, Z. Lu, Mater. Chem. Front. 2017, 1, 2495.

[75]

Y. C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 2013, 4, 93.

[76]

S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J. B. Baek, L. Dai, Angew. Chem. Int. Ed. 2012, 51, 4209.

[77]

J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park, S. H. Joo, J. Am. Chem. Soc. 2014, 136, 8875.

[78]

L. Tao, Y. Wang, Y. Zou, N. Zhang, Y. Zhang, Y. Wu, Y. Wang, R. Chen, S. Wang, Adv. Energy Mater. 2019, 10, 1901227.

[79]

W. Li, D. Wang, Y. Zhang, L. Tao, T. Wang, Y. Zou, Y. Wang, R. Chen, S. Wang, Adv. Mater. 2020, 32, 1907879.

[80]

H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, L. Dai, B. Liu, Sci. Adv. 2016, 2, e1501122.

[81]

M. Li, L. Zhang, Q. Xu, J. Niu, Z. Xia, J. Catal. 2014, 314, 66.

[82]

C. Wang, F. Yang, C. Xu, Y. Cao, H. Zhong, Y. Li, Mater. Lett. 2018, 214, 209.

[83]

Y. Jiang, L. Yang, T. Sun, J. Zhao, Z. Lyu, O. Zhuo, X. Wang, Q. Wu, J. Ma, Z. Hu, ACS Catal. 2015, 5, 6707.

[84]

P. A. Christensen, A. Hamnett, D. Linares-Moya, Phys. Chem. Chem. Phys. 2011, 13, 5206.

[85]

Y. P. Zhu, J. Ran, S. Z. Qiao, ACS Appl. Mater. Interfaces 2017, 9, 41980.

[86]

L. Zhong, C. Tang, B. Wang, H.-F. Wang, S. Gao, Y. Wang, Q. Zhang, New Carbon Mater. 2017, 32, 509.

[87]

Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen, X. Yan, C. L. Brown, X. Yao, Adv. Mater. 2016, 28, 9532.

[88]

A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.

[89]

V. J. Surya, K. Iyakutti, H. Mizuseki, Y. Kawazoe, Comp. Mater. Sci. 2012, 65, 144.

[90]

J. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496.

[91]

L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321.

[92]

Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, ACS Nano 2011, 5, 4350.

[93]

Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen, S. Huang, ACS Nano 2012, 6, 205.

[94]

Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, J. Mater. Chem. 2012, 22, 390.

[95]

Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou, R. Chen, Y. Wang, C. Jia, S. Wang, Adv. Mater. 2020, 32, 1905923.

[96]

W. Tian, W. Li, W. Yu, X. Liu, Micromachines 2017, 8, 163.

[97]

F. Mehmood, R. Pachter, W. Lu, J. J. Boeckl, J. Phys. Chem. C 2013, 117, 10366.

[98]

L. Zhang, Q. Xu, J. Niu, Z. Xia, Phys. Chem. Chem. Phys. 2015, 17, 16733.

[99]

T. Xing, Y. Zheng, L. H. Li, B. C. C. Cowie, D. Gunzelmann, S. Z. Qiao, S. Huang, Y. Chen, ACS Nano 2014, 8, 6856.

[100]

F. Joucken, Y. Tison, J. Lagoute, J. Dumont, D. Cabosart, B. Zheng, V. Repain, C. Chacon, Y. Girard, A. R. Botello-Méndez, S. Rousset, R. Sporken, J.-C. Charlier, L. Henrard, Phys. Rev. B 2012, 85, 161408.

[101]

S. K. Singh, K. Takeyasu, J. Nakamura, Adv. Mater. 2019, 31, 1804297.

[102]

D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361.

[103]

B. Zheng, X.-L. Cai, Y. Zhou, X.-H. Xia, ChemElectroChem 2016, 3, 2036.

[104]

G.-L. Chai, K. Qiu, M. Qiao, M.-M. Titirici, C. Shang, Z. Guo, Energ. Environ. Sci. 2017, 10, 1186.

[105]

Y. Jing, Z. Zhou, ACS Catal. 2015, 5, 4309.

[106]

Q. Peng, J. Chen, H. Ji, A. Morita, S. Ye, J. Am. Chem. Soc. 2018, 140, 15568.

[107]

H. Jiang, Y. Liu, W. Li, J. Li, Small 2018, 14, 1703739.

[108]

M. Son, S.-S. Chee, S.-Y. Kim, W. Lee, Y. H. Kim, B.-Y. Oh, J. Y. Hwang, B. H. Lee, M.-H. Ham, Carbon 2020, 159, 579.

[109]

Z. Jin, J. Yao, C. Kittrell, J. M. Tour, ACS Nano 2011, 5, 4112.

[110]

Y. Xue, B. Wu, L. Jiang, Y. Guo, L. Huang, J. Chen, J. Tan, D. Geng, B. Luo, W. Hu, G. Yu, Y. Liu, J. Am. Chem. Soc. 2012, 134, 11060.

[111]

Z. Wang, P. Li, Y. Chen, J. Liu, H. Tian, J. Zhou, W. Zhang, Y. Li, J. Mater. Chem. C 2014, 2, 7396.

[112]

H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, Small 2013, 9, 1316.

[113]

A. A. Dadkhah, M. Rabiee Faradonbeh, A. Rashidi, S. Tasharofi, F. Mansourkhani, J. Inorg. Organomet. Polym. Mater. 2018, 28, 1609.

[114]

J. Urban, P. Dąbrowski, J. Binder, M. Kopciuszyński, A. Wysmołek, Z. Klusek, M. Jałochowski, W. Strupiński, J. Baranowski, J. Appl. Phys. 2014, 115, 233504.

[115]

C. Boas, B. Focassio, E. Marinho Jr, D. G. Larrude, M. C. Salvadori, C. R. Leao, D. J. Dos Santos, Sci. Rep. 2019, 9, 13715.

[116]

C. Wang, Y. Zhou, L. He, T. W. Ng, G. Hong, Q. H. Wu, F. Gao, C. S. Lee, W. Zhang, Nanoscale 2013, 5, 600.

[117]

J. Zhang, L. Dai, ACS Catal. 2015, 5, 7244.

[118]

X. Shu, S. Chen, S. Chen, W. Pan, J. Zhang, Carbon 2020, 157, 234.

[119]

D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, Chem. Soc. Rev. 2010, 39, 228.

[120]

C. Liu, X. Liu, J. Tan, Q. Wang, H. Wen, C. Zhang, J. Power Sources 2017, 342, 157.

[121]

Z. Chen, L. Hou, Y. Cao, Y. Tang, Y. Li, Appl. Surf. Sci. 2018, 435, 937.

[122]

D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida, S. H. Yoon, Langmuir 2010, 26, 16096.

[123]

X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 2009, 131, 15939.

[124]

P. Chen, J.-J. Yang, S.-S. Li, Z. Wang, T.-Y. Xiao, Y.-H. Qian, S.-H. Yu, Nano Energy 2013, 2, 249.

[125]

S. Oh, J. Kim, M. Kim, D. Nam, J. Park, E. Cho, H. Kwon, J. Mater. Chem. A 2016, 4, 14400.

[126]

J. Zhu, S. Mu, Adv. Funct. Mater. 2020, 30, 2001097.

[127]

Z. Hou, X. Wang, T. Ikeda, K. Terakura, M. Oshima, M.-A. Kakimoto, S. Miyata, Phys. Rev. B 2012, 85, 165439.

[128]

X. Li, W. Cai, L. Colombo, R. S. Ruoff, Nano Lett. 2009, 9, 4268.

[129]

J. Han, G. Huang, Z. Wang, Z. Lu, J. Du, H. Kashani, M. Chen, Adv. Mater. 2018, 30, 1803588.

[130]

A. Ilnicka, M. Skorupska, P. Romanowski, P. Kamedulski, J. P. Lukaszewicz, Materials (Basel) 2020, 13, 2115.

[131]

J. Lim, J.-W. Jung, N.-Y. Kim, G. Y. Lee, H. J. Lee, Y. Lee, D. S. Choi, G. R. Yoon, Y.-H. Kim, I.-D. Kim, S. O. Kim, Energy Storage Mater. 2020, 32, 517.

[132]

K. Gao, B. Wang, L. Tao, B. V. Cunning, Z. Zhang, S. Wang, R. S. Ruoff, L. Qu, Adv. Mater. 2019, 31, 1805121.

[133]

H.-F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1803329.

[134]

H. Cui, M. Jiao, Y.-N. Chen, Y. Guo, L. Yang, Z. Xie, Z. Zhou, S. Guo, Small Methods 2018, 2, 1800144.

[135]

Q. Hu, G. Li, G. Li, X. Liu, B. Zhu, X. Chai, Q. Zhang, J. Liu, C. He, Adv. Energy Mater. 2019, 9, 1803867.

[136]

Q. Wang, Y. Ji, Y. Lei, Y. Wang, Y. Wang, Y. Li, S. Wang, ACS Energy Lett. 2018, 3, 1183.

[137]

L. Ge, D. Wang, P. Yang, H. Xu, L. Xiao, G. X. Zhang, X. Lu, Z. Duan, F. Meng, J. Zhang, M. An, Nanoscale 2019, 11, 17010.

[138]

L. Zhou, C. Zhang, X. Cai, Y. Qian, H. Jiang, B. Li, L. Lai, Z. Shen, W. Huang, ChemElectroChem 1811, 2018, 5.

[139]

S. Patra, R. Choudhary, E. Roy, R. Madhuri, P. K. Sharma, Nano Energy 2016, 30, 118.

[140]

F. Lou, M. E. M. Buan, N. Muthuswamy, J. C. Walmsley, M. Rønning, D. Chen, J. Mater. Chem. A 2016, 4, 1233.

[141]

G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193.

[142]

J. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611.

[143]

D. Y. Kim, M. Kim, D. W. Kim, J. Suk, J. J. Park, O. O. Park, Y. Kang, Carbon 2016, 100, 265.

[144]

S. D. Lacey, E. D. Walsh, E. Hitz, J. Dai, J. W. Connell, L. Hu, Y. Lin, Nano Energy 2017, 31, 386.

[145]

Y. Lin, B. Moitoso, C. Martinez-Martinez, E. D. Walsh, S. D. Lacey, J. W. Kim, L. Dai, L. Hu, J. W. Connell, Nano Lett. 2017, 17, 3252.

[146]

X. Ji, X. Zhu, X. Huang, Y. Wu, W. Wan, T. Yang, Y. Yan, Y. Wang, Z. Lü, Int. J. Hydrogen Energy 2018, 43, 16128.

[147]

J. Shui, Y. Lin, J. W. Connell, J. Xu, X. Fan, L. Dai, ACS Energy Lett. 2016, 1, 260.

[148]

M. He, P. Zhang, L. Liu, B. Liu, S. Xu, Electrochim. Acta 2016, 191, 90.

[149]

R. Kumar, S. Sahoo, E. Joanni, R. K. Singh, K. Maegawa, W. K. Tan, G. Kawamura, K. K. Kar, A. Matsuda, Mater. Today 2020, 39, 47.

[150]

W. G. Chong, F. Xiao, S. Yao, J. Cui, Z. Sadighi, J. Wu, M. Ihsan-Ul-Haq, M. Shao, J. K. Kim, Nanoscale 2019, 11, 6334.

[151]

F. Li, M. Zhu, Z. Luo, L. Guo, Z. Bian, Y. Li, K. Luo, J. Solid State Electrochem. 2019, 23, 2391.

[152]

J. Han, X. Guo, Y. Ito, P. Liu, D. Hojo, T. Aida, A. Hirata, T. Fujita, T. Adschiri, H. Zhou, M. Chen, Adv. Energy Mater. 2016, 6, 1501870.

[153]

A. Wu, G. Wei, F. Yang, G. Xia, X. Yan, S. Shen, F. Zhu, C. Ke, J. Zhang, Electrochim. Acta 2019, 318, 354.

[154]

D. Oh, E. Lara, N. Arellano, Y. C. Shin, P. Medina, J. Kim, T. Ta, E. Akca, C. Ozgit-Akgun, G. Demirci, H. C. Kim, S. J. Han, H. Maune, M. G. Samant, ACS Appl. Mater. Interfaces 2019, 11, 489.

[155]

J. Zhao, G. Chen, L. Zhu, G. Li, Electrochem. Commun. 2011, 13, 31.

[156]

S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 2011, 47, 6858.

[157]

M. Li, T. Chen, J. J. Gooding, J. Liu, ACS Sens. 2019, 4, 1732.

[158]

Y. Wu, X. Zhu, X. Ji, W.-L. Liu, W. Wan, Y. Wang, X. Pan, Z. Lu, J. Mater. Chem. A 2020, 8, 22356.

[159]

Q. Li, S. Zhang, L. Dai, L. S. Li, J. Am. Chem. Soc. 2012, 134, 18932.

[160]

Y. Liu, P. Wu, ACS Appl. Mater. Interfaces 2013, 5, 3362.

[161]

H. Jin, H. Huang, Y. He, X. Feng, S. Wang, L. Dai, J. Wang, J. Am. Chem. Soc. 2015, 137, 7588.

[162]

M. Fan, C. Zhu, J. Yang, D. Sun, Electrochim. Acta 2016, 216, 102.

[163]

T. Fan, G. Zhang, L. Jian, I. Murtaza, H. Meng, Y. Liu, Y. Min, J. Alloys Compd. 2019, 792, 844.

[164]

M. Wang, Z. Fang, K. Zhang, J. Fang, F. Qin, Z. Zhang, J. Li, Y. Liu, Y. Lai, Nanoscale 2016, 8, 11398.

[165]

M. Wang, J. Fang, L. Hu, Y. Lai, Z. Liu, Int. J. Hydrogen Energy 2017, 42, 21305.

[166]

T. V. Tam, S. G. Kang, M. H. Kim, S. G. Lee, S. H. Hur, J. S. Chung, W. M. Choi, Adv. Energy Mater. 2019, 9, 1900945.

[167]

S. Wu, J. Yi, K. Zhu, S. Bai, Y. Liu, Y. Qiao, M. Ishida, H. Zhou, Adv. Energy Mater. 2017, 7, 1601759.

[168]

C. Li, Y. Liu, B. Li, F. Zhang, Z. Cheng, P. He, H. Zhou, Nanotechnology 2019, 30, 364003.

[169]

J. Zhu, Y. Huang, W. Mei, C. Zhao, C. Zhang, J. Zhang, I. S. Amiinu, S. Mu, Angew. Chem. Int. Ed. 2019, 58, 3859.

[170]

L. Zhang, J. Niu, L. Dai, Z. Xia, Langmuir 2012, 28, 7542.

[171]

X. Zhang, A. Chen, L. Chen, Z. Zhou, Adv. Energy Mater. 2021, 11, 2003841.

[172]

W. Ma, H. Wan, L. Zhang, J. Y. Zheng, Z. Zhou, J. Energy Chem. 2021. https://doi.org/10.1016/j.jechem.2021.08.041

Energy & Environmental Materials
Pages 1103-1116
Cite this article:
Zhang Q, Wang C, Xie Z, et al. Defective/Doped Graphene-Based Materials as Cathodes for Metal–Air Batteries. Energy & Environmental Materials, 2022, 5(4): 1103-1116. https://doi.org/10.1002/eem2.12293

55

Views

0

Downloads

25

Crossref

25

Web of Science

24

Scopus

0

CSCD

Altmetrics

Received: 19 June 2021
Revised: 22 September 2021
Published: 24 September 2021
© 2022 Zhengzhou University
Return