AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A Rapid-Ab/Desorption and Portable Photothermal MIL-101(Cr) Nanofibrous Composite Membrane Fabricated by Spray-Electrospinning for Atmosphere Water Harvesting

Ailin Li1Jian Xiong1Ye Liu1Liming Wang1 ( )Xiaohong Qin1 ( )Jianyong Yu2
Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
Show Author Information

Abstract

MIL-101(Cr) is a promising moisture absorbent for solar-driven waterharvesting from moisture to tackle the worldwide water shortage issue.However, the MIL-101(Cr) powder suffers from a long ab/desorption cycledue to the crystal aggregation caused by its inherent powder properties.Here, we demonstrate a MIL-101(Cr) nanofibrous composite membrane witha nanofibrous matrix where MIL-101(Cr) is monodisperse in the 3D porousnanofibrous matrix through a simple spray-electrospinning strategy. Thecontinuous porous nanofibrous matrix not only offers sufficient sites for MIL-101(Cr) loading but also provides rapid moisture transport channels,resulting in a super-rapid ab/desorption duration of 50 min (including anabsorption process for 40 min and a desorption process for 10 min) andmulticycle daily water production of 15.9 L kg−1 d−1. Besides, the MIL-101 (Cr) nanofibrous composite membrane establishes a high solar absorption of 92.8%, and excellent photothermal conversion with the surface temperature of 70.7 °C under one-sun irradiation. In addition, the MIL-101(Cr) nanofibrous composite membrane shows excellent potential for practical application due to its flexibility, portability, and use stability. This work provides a new perspective of shortening MOF ab/desorption duration by introducing a porous nanofibrous matrix to improve the specific water production for the solar-driven ab/desorption water harvesting technique.

Electronic Supplementary Material

Download File(s)
eem-6-1-e12254_ESM.docx (3.9 MB)

References

[1]

R. P. Schwarzenbach, T. Egli, T. B. Hofstetter, U. von Gunten, B. Wehrli, Annu. Rev. Environ. Resour. 2010, 35, 109.

[2]

M. M. Mekonnen, A. Y. Hoekstra, Sci. Adv. 2016, 2, e1500323.

[3]

D. Meunier, D. Beysens, Atmos. Res. 2016, 178, 65.

[4]

S. Zhuang, H. Qi, X. Wang, X. Li, K. Liu, J. Liu, Glob. Chall. 2021, 5, 2000085.

[5]

Y. Tu, R. Wang, Y. Zhang, J. Wang, Joule 2018, 2, 1452.

[6]

R. Li, Y. Shi, M. Alsaedi, M. Wu, L. Shi, P. Wang, Environ. Sci. Technol. 2018, 52, 11367.

[7]

H. Qi, T. Wei, W. Zhao, B. Zhu, G. Liu, P. Wang, Z. Lin, X. Wang, X. Li, X. Zhang, J. Zhu, Adv. Mater. 2019, 31, e1903378.

[8]

S. N. Backer, A. M. Ramachandran, A. A. Venugopal, A. P. Mohamed, A. Asok, S. Pillai, ACS Appl. Nano Mater. 2020, 3, 6827.

[9]

X. Wang, X. Li, G. Liu, J. Li, X. Hu, N. Xu, W. Zhao, B. Zhu, J. Zhu, Angew. Chem. Int. Ed. Engl. 2019, 58, 12054.

[10]

F. Ni, N. Qiu, P. Xiao, C. Zhang, Y. Jian, Y. Liang, W. Xie, L. Yan, T. Chen, Angew. Chem. Int. Ed. Engl. 2020, 59, 19237.

[11]

D. K. Nandakumar, Y. Zhang, S. K. Ravi, N. Guo, C. Zhang, S. Tan, Adv. Mater. 2019, 31, e1806730.

[12]

X. Zhou, P. Zhang, F. Zhao, G. Yu, ACS Mater. Lett. 2020, 2, 1419.

[13]

H. Yao, P. Zhang, Y. Huang, H. Cheng, C. Li, L. Qu, Adv. Mater. 2020, 32, 1905875.

[14]

F. Gong, H. Li, Q. Zhou, M. Wang, W. Wang, Y. Lv, R. Xiao, D. V. Papavassilliou, Nano Energy 2020, 74, 104922.

[15]

F. Zhao, X. Zhou, Y. Liu, Y. Shi, Y. Dai, G. Yu, Adv. Mater. 2019, 31, 1806446.

[16]

X. Li, Z. Li, Q. Xia, H. Xi, Appl. Therm. Eng. 2007, 27, 869.

[17]

M. Simo, S. Sivashanmugam, C. J. Brown, V. Hlavacek, Ind. Eng. Chem. Res. 2009, 48, 9247.

[18]

M. W. Logan, S. Langevin, Z. Xia, Sci. Rep. 2020, 10, 1492.

[19]

J. Yang, X. Zhang, H. Qu, Z. Yu, Y. Zhang, T. J. Eey, Y.-W. Zhang, S. Tan, Adv. Mater. 2020, 32, 2002936.

[20]

Y.-K. Seo, J. Yoon, J. Lee, Y. Hwang, C.-H. Jun, J. Chang, S. Wuttke, P. Bazin, A. Viment, M. Daturi, S. Bourrelly, P. L. Lewwllyn, P. Horcajada, C. Serre, G. Ferey, Adv. Mater. 2012, 24, 806.

[21]

B. Cao, Y. Tu, R. Wang, iScience 2019, 15, 502.

[22]

A. Khutia, H. U. Rammelberg, T. Schmidt, S. Henninger, C. Janiak, Chem. Mater. 2013, 25, 790.

[23]

G. Akiyama, R. Matsuda, H. Sato, A. Hori, M. Takata, S. Kitagawa, Microporous Mesoporous Mater. 2012, 157, 89.

[24]

J. Yan, Y. Yu, C. Ma, J. Xiao, Q. Xia, Y. Li, Z. Li, Appl. Therm. Eng. 2015, 84, 118.

[25]

J. Xu, T. Li, J. Chao, S. Wu, T. Yan, W. Li, B. Cao, R. Wang, Angew. Chem. Int. Ed. Engl. 2020, 59, 5202.

[26]

N. Hanikel, M. S. Prevot, O. M. Yaghi, Nat. Nanotechnol. 2020, 15, 348.

[27]

N. Hanikel, M. S. Prevot, F. Fathieh, E. A. Kapustin, H. Lyu, H. Wang, N. J. Diercks, T. G. Glover, O. M. Yaghi, ACS Cent. Sci. 2019, 5, 1699.

[28]

D. H. Reneker, A. L. Yarin, Polymer 2008, 49, 2387.

[29]

T. Tsuru, R. Igi, M. Kanezashi, T. Yoshioka, S. Fujisaki, Y. Iwamoto, AICHE J. 2011, 57, 618.

[30]

S. Zhai, H. E. Karahan, C. Wang, Z. Pei, L. Wei, Y. Chen, Adv. Mater. 2012, 32, 1902387.

[31]

Wahiduzzaman, K. Allmond, J. Stone, S. Harp, K. Mujibur, Nanoscale Res. Lett. 2017, 12, 6.

[32]

J. E. Efome, D. Rana, T. Matsuura, C. Lan, ACS Appl. Mater. Interfaces 2018, 10, 18619.

[33]

T. Li, L. Liu, Z. Zhang, Z. Han, Sep. Purif. Technol. 2020, 237, 116360.

[34]

M. Zhang, M. Li, W. Wu, J. Chen, X. Ma, Z. Zhang, S. Xiang, New J. Chem. 2019, 43, 3913.

[35]

C. Wang, H. Wang, R. Luo, C. Liu, J. Li, X. Sun, J. Shen, W. Han, L. Wang, Chem. Eng. J. 2017, 330, 262.

[36]

X. Wu, Z. Wu, Y. Wang, T. Gao, Q. Li, H. Xu, Adv. Sci. 2021, 8, 2002501.

[37]

Y. Wang, X. Wu, X. Yang, G. Owens, H. Xu, Nano Energy 2020, 78, 105269.

[38]

Y. Wang, X. Wu, B. Shao, X. Yang, G. Owens, H. Xu, Sci. Bull. 2020, 65, 1380.

[39]

L. G. Gordeeva, Y. Tu, Q. Pan, M. L. Palash, B. B. Saha, Y. I. Aristov, R. Z. Wang, Nano Energy 2021, 84, 105946.

[40]

J. Xiong, M. Zhou, H. Zhang, Z. Quan, R. Wang, X. H. Qin, Mater. Res. Express 2018, 6, 035027.

[41]

Y. Zhang, L. Wu, X. Wang, J. Yu, B. Ding, Nat. Commun. 2020, 11, 3302.

Energy & Environmental Materials
Cite this article:
Li A, Xiong J, Liu Y, et al. A Rapid-Ab/Desorption and Portable Photothermal MIL-101(Cr) Nanofibrous Composite Membrane Fabricated by Spray-Electrospinning for Atmosphere Water Harvesting. Energy & Environmental Materials, 2023, 6(1). https://doi.org/10.1002/eem2.12254

36

Views

0

Downloads

22

Crossref

28

Web of Science

31

Scopus

1

CSCD

Altmetrics

Received: 15 April 2021
Revised: 24 June 2021
Published: 28 July 2021
© 2021 Zhengzhou University
Return