Journal Home > Volume 1 , Issue 4

Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit‐scale and system‐scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed  integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.


menu
Abstract
Full text
Outline
About this article

Mesoscience in cell biology and cancer research

Show Author's information Haili Qian1( )Adriana Sujey Beltran2( )
State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

Abstract

Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit‐scale and system‐scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed  integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.

Keywords: mesoscience, biology paradigms, oncology, integrative paradigms

References(129)

Li J. Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale. Engineering. 2016;2(3):276–85.
Huang W, Li J, Edwards PP. Mesoscience: exploring the common principle at mesoscales. Natl Sci Rev. 2018;5(3):321–6.
Li J, Huang W. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu Rev Chem Biomol Eng. 2018;9:41–60.
Heinrich AJ, Oliver WD, Vandersypen LMK, Ardavan A, Sessoli R, Loss D, et al. Quantum‐coherent nanoscience. Nat Nanotechnol. 2021;16(12):1318–29.
Shi C, Hu F, Wu R, Xu Z, Shao G, Yu R, et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso‐electronics/photonics based on cocoon silk materials. Adv Mater. 2021;33(50):e2005910.
Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, et al. Two‐dimensional gas of massless Dirac fermions in graphene. Nature. 2005;438(7065):197–200.
Prost J, Rondelez F. Structures in colloidal physical chemistry. Nature. 1991;350(Suppl 6319):1123. 10.1038/350011a0
Tanifuji K, Ohki Y. Metal‐sulfur compounds in N2 reduction and nitrogenase‐related chemistry. Chem Rev. 2020;120(12):5194–251.
Kellenberger E. The evolution of molecular biology. EMBO Rep. 2004;5(6):546–9.
Akhtar A, Fuchs E, Mitchison T, Shaw RJ, St Johnston D, Strasser A, et al. A decade of molecular cell biology: achievements and challenges. Nat Rev Mol Cell Biol. 2011;12(10):669–74.
Lyon AS, Peeples WB, Rosen MK. A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol. 2021;22(3):215–35.
Li JH, Huang W. Towards mesoscience: the principle of compromise in competition. In: Li J, Huang W, editors. Briefs in applied sciences and technology, Springer; 2014. 10.1007/978-3-642-41790-0
DOI
Misteli T. The self‐organizing genome: principles of genome architecture and function. Cell. 2020;183(1):28–45.
Bohrer CH, Larson DR. The stochastic genome and its role in gene expression. Cold Spring Harb Perspect Biol. 2021;13(10):a040386.
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin. 2021;14(1):50.
Huertas J, Woods EJ, Collepardo‐Guevara R. Multiscale modelling of chromatin organisation: resolving nucleosomes at near‐atomistic resolution inside genes. Curr Opin Cell Biol. 2022;75:102067.
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18(5):285–98.
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017;357(6357):eaaf4382.
Sanulli S, Trnka MJ, Dharmarajan V, Tibble RW, Pascal BD, Burlingame AL, et al. HP1 reshapes nucleosome core to promote phase separation of heterochromatin. Nature. 2019;575(7782):390–4.
Strickfaden H, Tolsma TO, Sharma A, Underhill DA, Hansen JC, Hendzel MJ. Condensed chromatin behaves like a solid on the mesoscale in vitro and in living. cells. Cell. 2020;183(7):1772–84.
Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH. Phase separation drives heterochromatin domain formation. Nature. 2017;547(7662):241–5.
Rippe K. Liquid–liquid phase separation in chromatin. Cold Spring Harb Perspect Biol. 2022;14(2):a040683.
Collepardo‐Guevara R, Portella G, Vendruscolo M, Frenkel D, Schlick T, Orozco M. Chromatin unfolding by epigenetic modifications explained by dramatic impairment of internucleosome interactions: a multiscale computational study. J Am Chem Soc. 2015;137(32):10205–15.
Joseph JA, Reinhardt A, Aguirre A, Chew PY, Russell KO, Espinosa JR, et al. Physics‐driven coarse‐grained model for biomolecular phase separation with near‐quantitative accuracy. Nat Comput Sci. 2021;1(11):73243. 10.1038/s43588-021-00155-3
Zhurkin VB, Norouzi D. Topological polymorphism of nucleosome fibers and folding of chromatin. Biophys J. 2021;120(4):577–85.
Abdelkareem M, Saint‐André C, Takacs M, Papai G, Crucifix C, Guo X, et al. Structural basis of transcription: RNA polymerase backtracking and its reactivation. Mol Cell. 2019;75(2):298–309.
Baranello L, Wojtowicz D, Cui K, Devaiah BN, Chung HJ, Chan‐Salis KY, et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell. 2016;165(2):357–71.
Corless S, Gilbert N. Effects of DNA supercoiling on chromatin architecture. Biophys Rev. 2016;8(3):245–58.
Craig JM, Laszlo AH, Nova IC, Brinkerhoff H, Noakes MT, Baker KS, et al. Determining the effects of DNA sequence on Hel308 helicase translocation along single‐stranded DNA using nanopore tweezers. Nucleic Acids Res. 2019;47(5):2506–13.
Kim S, Beltran B, Irnov I, Jacobs‐Wagner C. Long‐distance cooperative and antagonistic RNA polymerase dynamics via DNA supercoiling. Cell. 2019;179(1):106–19.
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 2021;22(1):108.
Sartorelli V, Lauberth SM. Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol. 2020;27(6):521–8.
Fukaya T, Lim B, Levine M. Enhancer control of transcriptional bursting. Cell. 2016;166(2):358–68.
Larsson AJM, Johnsson P, Hagemann‐Jensen M, Hartmanis L, Faridani OR, Reinius B, et al. Genomic encoding of transcriptional burst kinetics. Nature. 2019;565(7738):251–4.
Nair SJ, Suter T, Wang S, Yang L, Yang F, Rosenfeld MG. Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends Genet. 2022;38(10):1019–47.
Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, Zamudio AV, et al. Transcription factors activate genes through the phase‐separation capacity of their activation domains. Cell. 2018;175(7):1842–55.
Price RM, Budzyński MA, Kundra S, Teves SS. Advances in visualizing transcription factor—DNA interactions. Genome. 2021;64(4):449–66.
Liu Z, Tjian R. Visualizing transcription factor dynamics in living cells. J Cell Biol. 2018;217(4):1181–91.
Shrinivas K, Sabari BR, Coffey EL, Klein IA, Boija A, Zamudio AV, et al. Enhancer features that drive formation of transcriptional condensates. Mol Cell. 2019;75(3):549–61.
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–74.
Bakker GJ, Eich C, Torreno‐Pina JA, Diez‐Ahedo R, Perez‐Samper G, Zanten TS van, et al. Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion. Proc Natl Acad Sci USA. 2012;109(13):4869–74.
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature. 2009;457(7233):1159–62.
Garcia‐Parajo MF, Cambi A, Torreno‐Pina JA, Thompson N, Jacobson K. Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci. 2014;127(Pt 23):4995–5005.
Nussinov R, Tsai CJ, Jang H. Is nanoclustering essential for all oncogenic KRas pathways? Can it explain why wild‐type KRas can inhibit its oncogenic variant. Semin Cancer Biol. 2019;54:114–20.
Pan X, Fang L, Liu J, Senay‐Aras B, Lin W, Zheng S, et al. Auxin‐induced signaling protein nanoclustering contributes to cell polarity formation. Nat Commun. 2020;11(1):3914.
Lewis JD, Caldara AL, Zimmer SE, Stahley SN, Seybold A, Strong NL, et al. The desmosome is a mesoscale lipid raft–like membrane domain. Mol Biol Cell. 2019;30(12):1390–405.
Lorent JH, Diaz‐Rohrer B, Lin X, Spring K, Gorfe AA, Levental KR, et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat Commun. 2017;8(1):1219.
Garcia MA, Nelson WJ, Chavez N. Cell–cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol. 2018;10(4):a029181.
Zimmer SE, Kowalczyk AP. The desmosome as a model for lipid raft driven membrane domain organization. Biochim Biophys Acta Biomembr. 2020;1862(9):183329.
Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, et al. Microtubule detyrosination guides chromosomes during mitosis. Science. 2015;348(6236):799–803.
Camargo Ortega G, Götz M. Centrosome heterogeneity in stem cells regulates cell diversity. Trends Cell Biol. 2022;32(8):707–19.
Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E. High‐Resolution microtubule structures reveal the structural transitions in αβ‐tubulin upon GTP hydrolysis. Cell. 2014;157(5):1117–29.
Stepanek L, Pigino G. Microtubule doublets are double‐track railways for intraflagellar transport trains. Science. 2016;352(6286):721–4.
Bär J, Popp Y, Bucher M, Mikhaylova M. Direct and indirect effects of tubulin post‐translational modifications on microtubule stability: insights and regulations. Biochim Biophys Acta Mol Cell Res. 2022;1869(6):119241.
Montecinos‐Franjola F, Chaturvedi S, Schuck P, Sackett DL. All tubulins are not alike: dimer dissociation and monomer exchange differ depending on the biological source of tubulin. Biophys J. 2018;114(3):504a.
Vemu A, Atherton J, Spector JO, Moores CA, Roll‐Mecak A. Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell. 2017;28(25):3564–72.
Verhey KJ, Gaertig J. The tubulin code. Cell Cycle. 2007;6(17):2152–60.
Yu I, Garnham CP, Roll‐Mecak A. Writing and reading the tubulin code. J Biol Chem. 2015;290(28):17163–72.
Germain RN. MHC‐dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell. 1994;76(2):287–99.
Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD. A DNA‐based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell. 2017;169(1):108–19.
Vrisekoop N, Monteiro JP, Mandl JN, Germain RN. Revisiting thymic positive selection and the mature T cell repertoire for antigen. Immunity. 2014;41(2):181–90.
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular shape solution for mesoscopic remodeling of cellular membranes. Annu Rev Biophys. 2022;51:473–97.
O'gorman WE, Dooms H, Thorne SH, Kuswanto WF, Simonds EF, Krutzik PO, et al. The initial phase of an immune response functions to activate regulatory T cells. J Immunol. 2009;183(1):332–9.
Oyler‐Yaniv A, Oyler‐Yaniv J, Whitlock BM, Liu Z, Germain RN, Huse M, et al. A tunable diffusion‐consumption mechanism of cytokine propagation enables plasticity in cell‐to‐cell communication in the immune system. Immunity. 2017;46(4):609–20.
Ganti RS, Lo WL, McAffee DB, Groves JT, Weiss A, Chakrabort AK. How the T cell signaling network processes information to discriminate between self and agonist ligands. Proc Natl Acad Sci USA. 2020;117(42):26020–30.
Matheu MP, Othy S, Greenberg ML, Dong TX, Schuijs M, Deswarte K, et al. Imaging regulatory T cell dynamics and CTLA4‐mediated suppression of T cell priming. Nat Commun. 2015;6:1–11.
Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD, Mumbach MR, et al. Discovery of stimulation‐responsive immune enhancers with CRISPR activation. Nature. 2017;549(7670):111–15.
Chen K, Lu P, Beeraka NM, Sukocheva OA, Madhunapantula SV, Liu J, et al. Mitochondrial mutations and mitoepigenetics: focus on regulation of oxidative stress‐induced responses in breast cancers. Semin Cancer Biol. 2022;83:556–69.
Kersten K, Hu KH, Combes AJ, Samad B, Harwin T, Ray A, et al. Spatiotemporal co‐dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell. 2022;40(6):624–38.
Follain G, Herrmann D, Harlepp S, Hyenne V, Osmani N, Warren SC, et al. Fluids and their mechanics in tumour transit: shaping metastasis. Nat Rev Cancer. 2020;20(2):107–24.
Strilic B, Offermanns S. Intravascular survival and extravasation of tumor cells. Cancer Cell. 2017;32(3):282–93.
Szczerba BM, Castro‐Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature. 2019;566(7745):553–7.
Hattar K, Franz K, Ludwig M, Sibelius U, Wilhelm J, Lohmeyer J, et al. Interactions between neutrophils and non‐small cell lung cancer cells: enhancement of tumor proliferation and inflammatory mediator synthesis. Cancer Immunol Immunother. 2014;63(12):1297–306.
Hamilton G, Rath B, Klameth L, Hochmair MJ. Small cell lung cancer: recruitment of macrophages by circulating tumor cells. Oncoimmunology. 2016;5(3):e1093277.
Hamilton G, Rath B. Circulating tumor cell interactions with macrophages: implications for biology and treatment. Transl Lung Cancer Res. 2017;6(4):418–30.
Thomas GM, Brill A, Mezouar S, Crescence L, Gallant M, Dubois C, et al. Tissue factor expressed by circulating cancer cell‐derived microparticles drastically increases the incidence of deep vein thrombosis in mice. J Thromb Haemost. 2015;13(7):1310–9.
Stark K, Schubert I, Joshi U, Kilani B, Hoseinpour P, Thakur M, et al. Distinct pathogenesis of pancreatic cancer microvesicle‐associated venous thrombosis identifies new antithrombotic targets in vivo. Arterioscler Thromb Vasc Biol. 2018;38(4):772–86.
Liu Q, Liao Q, Zhao Y. Myeloid‐derived suppressor cells (MDSC) facilitate distant metastasis of malignancies by shielding circulating tumor cells (CTC) from immune surveillance. Med Hypotheses. 2016;87:34–9.
Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 2010;107(50):21677–82.
Nasiri R, Shamloo A, Ahadian S, Amirifar L, Akbari J, Goudie MJ, et al. Microfluidic‐based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications. Small. 2020;16(29):e2000171.
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol. 2019;12(1):137.
Hu J, Amor DR, Barbier M, Bunin G, Gore J. Emergent phases of ecological diversity and dynamics mapped in microcosms. Science. 2022;378(6615):85–9.
Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 2019;10(1):3763.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.
Peinado H, Zhang H, Matei IR, Costa‐Silva B, Hoshino A, Rodrigues G, et al. Pre‐metastatic niches: organ‐specific homes for metastases. Nat Rev Cancer. 2017;17(5):302–17.
Engwer C, Knappitsch M, Surulescu C. A multiscale model for glioma spread including cell‐tissue interactions and proliferation. Math Biosci Eng. 2016;13(2):443–60.
Knobe S, Dzierma Y, Wenske M, Berdel C, Fleckenstein J, Melchior P, et al. Feasibility and clinical usefulness of modelling glioblastoma migration in adjuvant radiotherapy. Z Med Phys. 2022;32(2):149–58.
Chen X, Hughes R, Mullin N, Hawkins RJ, Holen I, Brown NJ, et al. Atomic force microscopy reveals the mechanical properties of breast cancer bone metastases. Nanoscale. 2021;13(43):18237–46.
Bonilla LL, Capasso V, Alvaro M, Carretero M, Terragni F. On the mathematical modelling of tumor‐induced angiogenesis. Math Biosci Eng. 2017;14(1):45–66.
Capasso V, Micheletti A, Morale D. Stochastic geometric models, and related statistical issues in tumour‐induced angiogenesis. Math Biosci. 2008;214(1–2):20–31.
Capasso V, Morale D. Stochastic modelling of tumour‐induced angiogenesis. J Math Biol. 2009;58(1–2):219–33.
Possenti L, Cicchetti A, Rosati R, Cerroni D, Costantino ML, Rancati T, et al. A mesoscale computational model for microvascular oxygen transfer. Ann Biomed Eng. 2021;49(12):3356–73.
Eddy CZ, Raposo H, Manchanda A, Wong R, Li F, Sun B. Morphodynamics facilitate cancer cells to navigate 3D extracellular matrix. Sci Rep. 2021;11(1):20434.
Wershof E, Park D, Jenkins RP, Barry DJ, Sahai E, Bates PA. Matrix feedback enables diverse higher‐order patterning of the extracellular matrix. PLoS Comput Biol. 2019;15(10):e1007251.
Bertolaso M, Strauss B. The search for progress and a new theory framework in cancer research. In: Strauss B, Bertolaso M, Ernberg I, Bissell MJ, editors. Rethinking cancer: a new paradigm for the postgenomics era. The MIT Press; 2021.
DOI
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single‐particle cryo‐electron microscopy. Cell. 2015;161(3):438–49.
Rout MP, Sali A. Principles for integrative structural biology studies. Cell. 2019;177(6):1384–403.
Dodd T, Yan C, Ivanov I. Simulation‐based methods for model building and refinement in cryoelectron microscopy. J Chem Inf Model. 2020;60(5):2470–83.
Robertson MJ, Meyerowitz JG, Skiniotis G. Drug discovery in the era of cryo‐electron microscopy. Trends Biochem Sci. 2022;47(2):124–35.
Jakobs S, Stephan T, Ilgen P, Brüser C. Light microscopy of mitochondria at the nanoscale. Annu Rev Biophys. 2020;49:289–308.
Priest L, Peters JS, Kukura P. Scattering‐based light microscopy: from metal nanoparticles to single proteins. Chem Rev. 2021;121(19):11937–70.
Goodsell DS, Olson AJ, Forli S. Art and science of the cellular mesoscale. Trends Biochem Sci. 2020;45(6):472–83.
Goodsell DS, Franzen MA, Herman T. From atoms to cells: using mesoscale landscapes to construct visual narratives. J Mol Biol. 2018;430(21):3954–68.
Alber F, Förster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem. 2008;77:443–77.
Russel D, Lasker K, Webb B, Velázquez‐Muriel J, Tjioe E, Schneidman‐Duhovny D, et al. Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies. PLoS Biol. 2012;10(1):e1001244.
Im W, Liang J, Olson A, Zhou HX, Vajda S, Vakser IA. Challenges in structural approaches to cell modeling. J Mol Biol. 2016;428(15):2943–64.
Kim SJ, Fernandez‐Martinez J, Nudelman I, Shi Y, Zhang W, Raveh B, et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature. 2018;555(7697):475–82.
Rosa A, Zimmer C. Computational models of large‐scale genome architecture. Int Rev Cell Mol Biol. 2014;307:275–349.
Hacker WC, Li S, Elcock AH. Features of genomic organization in a nucleotide‐resolution molecular model of the Escherichia coli chromosome. Nucleic Acids Res. 2017;45(13):7541–54.
Goodsell DS, Autin L, Olson AJ. Lattice models of bacterial nucleoids. J Phys Chem B. 2018;122(21):5441–47.
Yildirim A, Feig M. High‐resolution 3D models of caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res. 2018;46(8):3937–52.
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, et al. Molecular anatomy of a trafficking organelle. Cell. 2006;127(4):831–46.
Singharoy A, Maffeo C, Delgado‐Magnero KH, Swainsbury D, Sener M, Kleinekathöfer U, et al. Atoms to phenotypes: molecular design principles of cellular energy metabolism. Cell. 2019;179(5):1098–111.
Prokop A. Towards the first principles in biology and cancer: new vistas in computational systems biology of cancer. Life (Basel). 2021;12(1):21.
Prigogine I, Rysselberghe PV. Introduction to thermodynamics of irreversible processes. J Electrochem Soc. 1963;110(4):97C.
Seely AJE, Macklem P. Fractal variability: an emergent property of complex dissipative systems. Chaos. 2012;22(1):013108.
Yuan R, Zhu X, Wang G, Li S, Ao P. Cancer as robust intrinsic state shaped by evolution: a key issues review. Rep Prog Phys. 2017;80(4):042701.
Anastasiadou E, Jacob LS, Slack FJ. Non‐coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.
Lasker K. Mesoscale organization in bacteria. Nat Rev Mol Cell Biol. 2022;23(4):230.
Susca EM, Beaucage PA, Thedford RP, Singer A, Gruner SM, Estroff LA, et al. Preparation of macroscopic Block‐Copolymer‐Based gyroidal mesoscale single crystals by solvent evaporation. Adv Mater. 2019;31(40):e1902565.
Wendl A, Eisenlohr H, Rucker F, Duvinage C, Kleinhans M, Vojta M, et al. Emergence of mesoscale quantum phase transitions in a ferromagnet. Nature. 2022;609(7925):65–70.
Johnson GT, Autin L, Al‐Alusi M, Goodsell DS, Sanner MF, Olson AJ. cellPACK: a virtual mesoscope to model and visualize structural systems biology. Nat Methods. 2015;12(1):85–91.
Stölken M, Beck F, Haller T, Hegerl R, Gutsche I, Carazo JM, et al. Maximum likelihood based classification of electron tomographic data. J Struct Biol. 2011;173(1):77–85.
Vos SM. Understanding transcription across scales: from base pairs to chromosomes. Mol Cell. 2021;81(8):1601–16.
Huang S, Zhu S, Kumar P, MacMicking JD. A phase‐separated nuclear GBPL circuit controls immunity in plants. Nature. 2021;594(7863):424–29.
Lu R, Liang Y, Meng G, Zhou P, Svoboda K, Paninski L, et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution. Nat Methods. 2020;17(3):291–4.
Mills ZG, Mao W, Alexeev A. Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol. 2013;31(7):426–34.
Buisson R, Langenbucher A, Bowen D, Kwan EE, Benes CH, Zou L, et al. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science. 2019;364(6447):eaaw2872.
Wong HS, Germain RN. Mesoscale T cell antigen discrimination emerges from intercellular feedback. Trends Immunol. 2021;42(10):865–75.
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 October 2022
Accepted: 17 October 2022
Published: 17 November 2022
Issue date: December 2022

Copyright

© 2022 The Authors.

Acknowledgements

None.

Rights and permissions

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

Return