Journal Home > Online First

Developing light-emitting diodes (LEDs) with the merits of low driving and high brightness has always been attractive. Considering the carrier dynamic process under electroexcitation, the built-in potential (Vbi) represents the moment that the photons start to be produced in a LED. However, it has not been carefully studied and discussed. Here, we observed that by employing an interface regulation strategy to enhance hole concentration, the Vbi of quantum dot LEDs (QLEDs) can be reduced. Combined with the characterization methods of Mott–Schottky (MS) and scanning Kelvin probe microscopy (SKPM), the key indicator of Vbi on driving voltage for QLEDs is confirmed. Profiting from the reduction of Vbi, a record-breaking ultra-low turn-on voltage of 2.2 V (@1 cd/m2) is achieved in a blue QLED. The blue QLED shows an advantage of high brightness under low driving voltages, i.e., 1000 cd/m2@3.10 V and 5000 cd/m2@3.88 V. This work proposes a reference strategy to predict and analyze the driving voltage issue, which is beneficial to facilitating the development of low-driving QLEDs in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A record-breaking low turn-on voltage blue QLED via reducing built-in potential

Show Author's information Run Wang1Hengyang Xiang1( )Chi Zhang2Hongyang Li1Yuqin Su1Qi Chen2( )Qinye Bao3Gaoran Li1Haibo Zeng1( )
MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics and Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
School of Physics and Electronic Science East China Normal University, Shanghai 200241, China

Abstract

Developing light-emitting diodes (LEDs) with the merits of low driving and high brightness has always been attractive. Considering the carrier dynamic process under electroexcitation, the built-in potential (Vbi) represents the moment that the photons start to be produced in a LED. However, it has not been carefully studied and discussed. Here, we observed that by employing an interface regulation strategy to enhance hole concentration, the Vbi of quantum dot LEDs (QLEDs) can be reduced. Combined with the characterization methods of Mott–Schottky (MS) and scanning Kelvin probe microscopy (SKPM), the key indicator of Vbi on driving voltage for QLEDs is confirmed. Profiting from the reduction of Vbi, a record-breaking ultra-low turn-on voltage of 2.2 V (@1 cd/m2) is achieved in a blue QLED. The blue QLED shows an advantage of high brightness under low driving voltages, i.e., 1000 cd/m2@3.10 V and 5000 cd/m2@3.88 V. This work proposes a reference strategy to predict and analyze the driving voltage issue, which is beneficial to facilitating the development of low-driving QLEDs in the future.

Keywords: built-in potential, high brightness, low turn-on voltage, quantum dot light-emitting diodes (QLEDs)

References(50)

[1]
Nathan, S.; Shammas, N.; Grainger, S. Energy saving using light emitting diodes in lighting applications. In Proceedings of the 41st International Universities Power Engineering Conference, Newcastle upon Tyne, UK, 2006, pp 960–964.
DOI
[2]

Yeh, N.; Chung, J. P. High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180.

[3]

Ren, A. B.; Wang, H.; Zhang, W.; Wu, J.; Wang, Z. M.; Penty, R. V.; White, I. H. Emerging light-emitting diodes for next-generation data communications. Nat. Electron. 2021, 4, 559–572.

[4]

Pimputkar, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S. Prospects for LED lighting. Nat. Photonics 2009, 3, 180–182.

[5]

Nardelli, A.; Deuschle, E.; de Azevedo, L. D.; Pessoa, J. L. N.; Ghisi, E. Assessment of light emitting diodes technology for general lighting: A critical review. Renew. Sustain. Energy Rev. 2017, 75, 368–379.

[6]

Wang, R.; Xiang, H. Y.; Tu, S. Y.; Li, Y.; Zhou, Y. H.; Zeng, H. B. Full solution-processed heavy-metal-free mini-QLEDs for flexible display applications. Nanoscale 2022, 14, 12736–12743.

[7]

Ren, Z. W.; Xiao, X. T.; Ma, R. M.; Lin, H.; Wang, K.; Sun, X. W.; Choy, W. C. H. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv. Funct. Mater. 2019, 29, 1905339.

[8]

Wang, F. Z.; Wang, Z. Y.; Sun, W. D.; Wang, Z. B.; Bai, Y. M.; Hayat, T.; Alsaedi, A.; Tan, Z. A. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 2020, 16, 2002940.

[9]

Gangishetty, M. K.; Hou, S. C.; Quan, Q. M.; Congreve, D. N. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv. Mater. 2018, 30, 1706226.

[10]

Liu, C.; Fu, Q.; Zou, Y.; Yang, C. L.; Ma, D. G.; Qin, J. G. Low turn-on voltage, high-power-efficiency, solution-processed deep-blue organic light-emitting diodes based on starburst oligofluorenes with diphenylamine end-capper to enhance the HOMO level. Chem. Mater. 2014, 26, 3074–3083.

[11]

Kwak, J.; Bae, W. K.; Lee, D.; Park, I.; Lim, J.; Park, M.; Cho, H.; Woo, H.; Yoon, D. Y.; Char, K. et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure. Nano Lett. 2012, 12, 2362–2366.

[12]

Ji, W. Y.; Jing, P. T.; Xu, W.; Yuan, X.; Wang, Y. J.; Zhao, J. L.; Jen, A. K. Y. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure. Appl. Phys. Lett. 2013, 103, 053106.

[13]

Xie, G. H.; Meng, Y. L.; Wu, F. M.; Tao, C.; Zhang, D. D.; Liu, M. J.; Xue, Q.; Chen, W.; Zhao, Y. Very low turn-on voltage and high brightness tris-(8-Hydroxyquinoline) aluminum-based organic light-emitting diodes with a MoO x p-doping layer. Appl. Phys. Lett. 2008, 92, 093305.

[14]

Ji, W. Y.; Lv, Y.; Jing, P. T.; Zhang, H.; Wang, J.; Zhang, H. Z.; Zhao, J. L. Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer. ACS Appl. Mater. Interfaces 2015, 7, 15955–15960.

[15]

Chen, H. T.; Ding, K.; Fan, L. W.; Liu, W.; Zhang, R.; Xiang, S. P.; Zhang, Q.; Wang, L. All-solution-processed quantum dot light emitting diodes based on double hole transport layers by hot spin-coating with highly efficient and low turn-on voltage. ACS Appl. Mater. Interfaces 2018, 10, 29076–29082.

[16]

Luo, H. X.; Zhang, W. J.; Li, M. L.; Yang, Y. X.; Guo, M. X.; Tsang, S. W.; Chen, S. Origin of subthreshold turn-on in quantum-dot light-emitting diodes. ACS Nano 2019, 13, 8229–8236.

[17]

Meng, L.; Yao, E. P.; Hong, Z. R.; Chen, H. J.; Sun, P. Y.; Yang, Z. L.; Li, G.; Yang, Y. Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 2017, 29, 1603826.

[18]

Qiao, X. F.; Ma, D. G. Triplet–triplet annihilation effects in rubrene/C60 OLEDs with electroluminescence turn-on breaking the thermodynamic limit. Nat. Commun. 2019, 10, 4683.

[19]

Su, Q.; Chen, S. M. Thermal assisted up-conversion electroluminescence in quantum dot light emitting diodes. Nat. Commun. 2022, 13, 369.

[20]

Lin, X.; Wu, X. M.; Zheng, J. J.; Rui, H. S.; Zhang, Z.; Hua, Y. L.; Yin, S. G. Enhanced performance of green perovskite quantum dots light-emitting diode based on co-doped polymers as hole transport layer. IEEE Electron Device Lett. 2019, 40, 1479–1482.

[21]

Qian, L.; Zheng, Y.; Xue, J. G.; Holloway, P. H. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 2011, 5, 543–548.

[22]

Seidel, W.; Titkov, A.; André, J. P.; Voisin, P.; Voos, M. High-efficiency energy up-conversion by an “Auger fountain” at an InP-AIInas type-II heterojunction. Phys. Rev. Lett. 1994, 73, 2356–2359.

[23]

Yuan, S.; Liu, Q. W.; Tian, Q. S.; Jin, Y.; Wang, Z. K.; Liao, L. S. Auger effect assisted perovskite electroluminescence modulated by interfacial minority carriers. Adv. Funct. Mater. 2020, 30, 1909222.

[24]

Tu, L. Y.; Tang, X. T.; Wang, Y.; Zhao, X.; Ma, C. H.; Ye, S. N.; Xiong, Z. H. Dynamic behaviors of exciplex states in rubrene/C60-based OLEDs with sub-band-gap turn-on electroluminescence. Phys. Rev. Appl. 2021, 16, 064002.

[25]

Xiang, C. Y.; Peng, C.; Chen, Y.; So, F. Origin of sub-bandgap electroluminescence in organic light-emitting diodes. Small 2015, 11, 5439–5443.

[26]

Sadi, T.; Radevici, I.; Oksanen, J. Thermophotonic cooling with light-emitting diodes. Nat. Photonics 2020, 14, 205–214.

[27]

Li, J. L.; Liang, Z.; Su, Q. C.; Jin, H.; Wang, K. L.; Xu, G.; Xu, X. Q. Small molecule-modified hole transport layer targeting low turn-on-voltage, bright, and efficient full-color quantum dot light emitting diodes. ACS Appl. Mater. Interfaces 2018, 10, 3865–3873.

[28]

Cheng, T.; Wang, F. Z.; Sun, W. D.; Wang, Z. B.; Zhang, J.; You, B. G.; Li, Y.; Hayat, T.; Alsaed, A.; Tan, Z. A. High-performance blue quantum dot light-emitting diodes with balanced charge injection. Adv. Electron. Mater. 2019, 5, 1800794.

[29]

Qu, X. W.; Zhang, N.; Cai, R.; Kang, B. N.; Chen, S. M.; Xu, B.; Wang, K.; Sun, X. W. Improving blue quantum dot light-emitting diodes by a lithium fluoride interfacial layer. Appl. Phys. Lett. 2019, 114, 071101.

[30]

Lin, Q. L.; Wang, L.; Li, Z. H.; Shen, H. B.; Guo, L. J.; Kuang, Y. M.; Wang, H. Z.; Li, L. S. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photonics 2018, 5, 939–946.

[31]

Yao, Z. W.; Bi, C. H.; Liu, A. Q.; Zhang, M. Q.; Tian, J. J. High brightness and stability pure-blue perovskite light-emitting diodes based on a novel structural quantum-dot film. Nano Energy 2022, 95, 106974.

[32]

Jiang, Y. Z.; Sun, C. J.; Xu, J.; Li, S. S.; Cui, M. H.; Fu, X. L.; Liu, Y.; Liu, Y. Q.; Wan, H. Y.; Wei, K. Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 2022, 612, 679–684.

[33]

Park, Y. R.; Kim, H. H.; Eom, S.; Choi, W. K.; Choi, H.; Lee, B. R.; Kang, Y. Luminance efficiency roll-off mechanism in CsPbBr3− x Cl x mixed-halide perovskite quantum dot blue light-emitting diodes. J. Mater. Chem. C 2021, 9, 3608–3619.

[34]

Pan, J. Y.; Zhao, Z. H.; Fang, F.; Wang, L. X.; Wang, G. Z.; Liu, C. J.; Chen, J.; Xie, J.; Sun, J. Y.; Wang, K. et al. Multiple cations enhanced defect passivation of blue perovskite quantum dots enabling efficient light-emitting diodes. Adv. Opt. Mater. 2020, 8, 2001494.

[35]

Bi, Y. H.; Cao, S.; Yu, P.; Du, Z. T.; Wang, Y. J.; Zheng, J. J.; Zou, B. S.; Zhao, J. L. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 2023, 19, 2303247.

[36]

Zhang, W. D.; Ding, S. H.; Zhuang, W. D.; Wu, D.; Liu, P.; Qu, X. W.; Liu, H. C.; Yang, H. C.; Wu, Z. H.; Wang, K. et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 2020, 30, 2005303.

[37]

Kim, T.; Kim, K. H.; Kim, S.; Choi, S. M.; Jang, H.; Seo, H. K.; Lee, H.; Chung, D. Y.; Jang, E. Efficient and stable blue quantum dot light-emitting diode. Nature 2020, 586, 385–389.

[38]

Lu, Y. S.; Wang, Z.; Chen, J. W.; Peng, Y.; Tang, X. S.; Liang, Z. S.; Qi, F.; Chen, W. W. Tuning hole transport layers and optimizing perovskite films thickness for high efficiency CsPbBr3 nanocrystals electroluminescence light-emitting diodes. J. Lumin. 2021, 234, 117952.

[39]

Hu, L. F.; Ye, Z. X.; Wu, D.; Wang, Z. J.; Wang, W. G.; Wang, K.; Cui, X. Q.; Wang, N.; An, H. Y.; Li, B. B. et al. Marked efficiency improvement of FAPb0.7Sn0.3Br3 perovskite light-emitting diodes by optimization of the light-emitting layer and hole-transport layer. Nanomaterials 2022, 12, 1454.

[40]

Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J. Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 2008, 8, 3488–3492.

[41]

Zhu, B. Y.; Ji, W. Y.; Duan, Z. Q.; Sheng, Y.; Wang, T.; Yuan, Q. L.; Zhang, H.; Tang, X. S.; Zhang, H. Z. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes. J. Mater. Chem. C 2018, 6, 4683–4690.

[42]

Berleb, S.; Brütting, W.; Paasch, G. Interfacial charges and electric field distribution in organic hetero-layer light-emitting devices. Org. Electron. 2000, 1, 41–47.

[43]

Shmshad, A.; Tang, J. L.; Muhammad, I.; Han, D. B.; Zhang, X.; Chang, S.; Shi, Q. F.; Zhong, H. Z. Illustrating the shell thickness dependence in alloyed core/shell quantum-dot-based light-emitting diodes by impedance spectroscopy. J. Phys. Chem. C 2019, 123, 26011–26017.

[44]

Zhang, X. L.; Huang, H. H.; Ling, X. F.; Sun, J. G.; Jiang, X. Y.; Wang, Y.; Xue, D.; Huang, L. Z.; Chi, L. F.; Yuan, J. Y. et al. Homojunction perovskite quantum dot solar cells with over 1 µm-thick photoactive layer. Adv. Mater. 2022, 34, 2105977.

[45]

Brütting, W.; Berleb, S.; Mückl, A. G. Device physics of organic light-emitting diodes based on molecular materials. Org. Electron. 2001, 2, 1–36.

[46]

Worku, M.; Ben-Akacha, A.; Sridhar, S.; Frick, J. R.; Yin, S. C.; He, Q. Q.; Robb, A. J.; Chaaban, M.; Liu, H.; Winfred, J. S. R. V. et al. Band edge control of quasi-2D metal halide perovskites for blue light-emitting diodes with enhanced performance. Adv. Funct. Mater. 2021, 31, 2103299.

[47]

Zhang, X. L.; Xu, B.; Zhang, J. B.; Gao, Y.; Zheng, Y. J.; Wang, K.; Sun, X. W. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes: Dual-phase CsPbBr3-CsPb2Br5 composites. Adv. Funct. Mater. 2016, 26, 4595–4600.

[48]

Nowy, S.; Ren, W.; Elschner, A.; Lövenich, W.; Brütting, W. Impedance spectroscopy as a probe for the degradation of organic light-emitting diodes. J. Appl. Phys. 2010, 107, 054501.

[49]

Zhang, M. Y.; Chen, Q.; Xue, R. M.; Zhan, Y.; Wang, C.; Lai, J. Q.; Yang, J.; Lin, H. Z.; Yao, J. L.; Li, Y. W. et al. Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 2019, 10, 4593.

[50]

Chen, Q.; Mao, L.; Li, Y. W.; Kong, T.; Wu, N.; Ma, C. Q.; Bai, S.; Jin, Y. Z.; Wu, D.; Lu, W. et al. Quantitative operando visualization of the energy band depth profile in solar cells. Nat. Commun. 2015, 6, 7745.

File
6570_ESM.pdf (1,008.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 December 2023
Revised: 31 January 2024
Accepted: 17 February 2024
Published: 30 April 2024

Copyright

© Tsinghua University Press 2024

Acknowledgements

Acknowledgements

Financial support was from the National Key Research and Development Program of China (No. 2022YFB3606502), the National Natural Science Foundation of China (Nos. 52131304, 62004101, 62261160392, and 22022205), Jiangsu graduate and practice innovation program (No. KYCX23_0456), and the Fundamental Research Funds for the Central Universities (No. 30920041117).

Return