Journal Home > Volume 3 , Issue 2

In this study, we present a comprehensive overview of supramolecular self-assemblies comprising cyclodextrins (CDs) and polyoxometalates (POMs). We summarize the recent advancements in supramolecular POM–CD systems, including their structures, functions, and applications. Subsequently, we focus on the self-assembly behavior of CDs and POMs, encompassing the formation of inclusion complexes, host–guest interactions, and the development of hybrid materials. In addition, we discuss the remarks on future outlooks and hope that this review will serve as a valuable reference for researchers engaged in the fields of supramolecular/POM chemistry, materials science, and nanotechnology.


menu
Abstract
Full text
Outline
About this article

Supramolecular self-assembly of polyoxometalates and cyclodextrin: Progress and perspectives

Show Author's information Pai Wang1,§Zitong Wang1,§Peisen Wang1Aadil Nabi Chishti1Hongxu Zhang1Jianhang Shi1Lubin Ni1 ( )Saba Jamil3 ( )Yongge Wei2 ( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan

§ Pai Wang and Zitong Wang contributed equally to this work.

Abstract

In this study, we present a comprehensive overview of supramolecular self-assemblies comprising cyclodextrins (CDs) and polyoxometalates (POMs). We summarize the recent advancements in supramolecular POM–CD systems, including their structures, functions, and applications. Subsequently, we focus on the self-assembly behavior of CDs and POMs, encompassing the formation of inclusion complexes, host–guest interactions, and the development of hybrid materials. In addition, we discuss the remarks on future outlooks and hope that this review will serve as a valuable reference for researchers engaged in the fields of supramolecular/POM chemistry, materials science, and nanotechnology.

Keywords: self-assembly, polyoxometalates, host–guest interaction, cyclodextrins

References(79)

[1]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[2]

Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048.

[3]

Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358.

[4]

Chen, W. Z.; Yi, X. F.; Zhang, J.; Zhang, L. Heterometallic Mo-Ti oxo clusters with metal-metal bonds: Preparation and visible-light absorption behaviors. Polyoxometalates 2023, 2, 9140013.

[5]

Wang, P.; Zhang, H. X.; Wang, P. S.; Zha, J.; Gautam, J.; Zhang, H. Z.; Li, R.; Zhang, L. N.; Diao, G. W.; Ni, L. B. A crown ether supramolecular host-guest complex with Keggin polyoxometalate: Synthesis, crystal structure and electrocatalytic performance for hydrogen evolution reaction. Catal. Commun. 2022, 165, 106446.

[6]

Li, B.; Wu, L. X. Perspective of polyoxometalate complexes on flexible assembly and integrated potentials. Polyoxometalates 2023, 2, 9140016.

[7]

Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W.; Chen, L. J. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

[8]

Shi, J. H.; Zhang, H. X.; Wang, P. S.; Wang, P.; Zha, J. J.; Liu, Y.; Gautam, J.; Zhang, L. N.; Wang, Y.; Xie, J. et al. Inorganic-organic hybrid supramolecular architectures based on Keggin polyoxometalates and crown ether: Synthesis, crystal structure, and electrochemical properties. CrystEngComm 2021, 23, 8482–8489.

[9]

Zhao, H. X.; Tao, L.; Zhang, F. M.; Zhang, Y.; Liu, Y. Q.; Xu, H. J.; Diao, G. W.; Ni, L. B. Transition metal substituted sandwich-type polyoxometalates with a strong metal-C (imidazole) bond as anticancer agents. Chem. Commun. 2019, 55, 1096–1099.

[10]

Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.

[11]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[12]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[13]

Kamata, K.; Yonehara, K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat. Chem. 2010, 2, 478–483.

[14]

Liu, Y. W.; Liu, S. M.; He, D. F.; Li, N.; Ji, Y. J.; Zheng, Z. P.; Luo, F.; Liu, S. X.; Shi, Z.; Hu, C. W. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697–12703.

[15]

Gao, G. G.; Li, F. Y.; Xu, L.; Liu, X. Z.; Yang, Y. Y. CO2 coordination by inorganic polyoxoanion in water. J. Am. Chem. Soc. 2008, 130, 10838–10839.

[16]

Zhou, J. H.; Zhao, W. C.; Miao, Z. H.; Wang, J. G.; Ma, Y.; Wu, H. T.; Sun, T. D.; Qian, H. S.; Zha, Z. Folin-ciocalteu assay inspired polyoxometalate nanoclusters as a renal clearable agent for non-inflammatory photothermal cancer therapy. ACS Nano 2020, 14, 2126–2136.

[17]

Hurst, J. K. In pursuit of water oxidation catalysts for solar fuel production. Science 2010, 328, 315–316.

[18]

Stracke, J. J.; Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10−: Identification of heterogeneous CoO x as the dominant catalyst. J. Am. Chem. Soc. 2011, 133, 14872–14875.

[19]

Car, P. E.; Guttentag, M.; Baldridge, K. K.; Alberto, R.; Patzke, G. R. Synthesis and characterization of open and sandwich-type polyoxometalates reveals visible-light-driven water oxidation via POM-photosensitizer complexes. Green Chem. 2012, 14, 1680–1688.

[20]

Qin, J. S.; Du, D. Y.; Guan, W.; Bo, X. J.; Li, Y. F.; Guo, L. P.; Su, Z. M.; Wang, Y. Y.; Lan, Y. Q.; Zhou, H. C. Ultrastable polymolybdate-based metal-organic frameworks as highly active electrocatalysts for hydrogen generation from water. J. Am. Chem. Soc. 2015, 137, 7169–7177.

[21]

Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.

[22]

Ma, Y. Y.; Wu, C. X.; Feng, X. J.; Tan, H. Q.; Yan, L. K.; Liu, Y.; Kang, Z. H.; Wang, E. B.; Li, Y. G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ. Sci. 2017, 10, 788–798.

[23]

Huang, Y. C.; Ge, J. X.; Hu, J.; Zhang, J. W.; Hao, J.; Wei, Y. G. Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701601.

[24]

Gautam, J.; Liu, Y.; Gu, J.; Ma, Z. Y.; Zha, J. J.; Dahal, B.; Zhang, L.-N.; Chishti, A. N.; Ni, L. B.; Diao, G. W. et al. Fabrication of polyoxometalate anchored zinc cobalt sulfide nanowires as a remarkable bifunctional electrocatalyst for overall water splitting. Adv. Funct. Mater. 2021, 31, 2106147.

[25]

Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

[26]

Zhang, Y.; Liu, J.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem 2019, 1, 100021.

[27]

Ye, J. C.; Chen, J. J.; Yuan, R. M.; Deng, D. R.; Zheng, M. S.; Cronin, L.; Dong, Q. F. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters. J. Am. Chem. Soc. 2018, 140, 3134–3138.

[28]

Ni, L. B.; Yang, G.; Liu, Y.; Wu, Z.; Ma, Z. Y.; Shen, C.; Lv, Z. X.; Wang, Q.; Gong, X. X.; Xie, J. et al. Self-assembled polyoxometalate nanodots as bidirectional cluster catalysts for polysulfide/sulfide redox conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 12222–12236.

[29]

Ding, Y. X.; Zheng, Q. H.; Peng, M. T.; Chen, C.; Zou, K. F.; Dong, B. X.; Liu, W. L.; Teng, Y. L. A new ɛ-Keggin polyoxometalate-based metal-organic framework: From design and synthesis to electrochemical hydrogen evolution. Catal. Commun. 2021, 161, 106367.

[30]

Ge, J. X.; Hu, J.; Zhu, Y. T.; Zeb, Z.; Zang, D. J.; Qin, Z. X.; Huang, Y. C.; Zhang, J. W.; Wei, Y. G. Recent advances in polyoxometalates for applications in electrocatalytic hydrogen evolution reaction. Acta Phys. Chim. Sin. 2020, 36, 1906063.

[31]

Ni, L. B.; Güttinger, R.; Triana, C. A.; Spingler, B.; Baldridge, K. K.; Patzke, G. R. Pathways towards true catalysts: Computational modelling and structural transformations of Zn-polyoxotungstates. Dalton Trans. 2019, 48, 13293–13304.

[32]

Ni, L. B.; Patscheider, J.; Baldridge, K. K.; Patzke, G. R. New perspectives on polyoxometalate catalysts: Alcohol oxidation with Zn/Sb-polyoxotungstates. Chem.—Eur. J. 2012, 18, 13293–13298.

[33]

Zhou, J.; Xu, D. T.; Tian, G.; He, Q.; Zhang, X.; Liao, J.; Mei, L. Q.; Chen, L.; Gao, L. Z.; Zhao, L. N. et al. Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. J. Am. Chem. Soc. 2023, 145, 4279–4293.

[34]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[35]

Wei, Z. Y.; Wu, Z. K.; Ru, S.; Ni, L. B.; Wei, Y. G. Research progress of polyoxometalates-cyclodextrin supramolecular system. Chem. J. Chin. Univ., 2022, 43, 20210665.

[36]

Cheng, M. Y.; Liu, Y. F.; Du, W. X.; Shi, J. W.; Li, J. H.; Wang, H. Y.; Li, K.; Yang, G. P.; Zhang, D. D. Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high‐efficiency catalysis for pyrazoles. Chin. Chem. Lett. 2022, 33, 3899–3902.

[37]

Li, K.; Lin, X. L.; Zeng, K.; Gao, X. F.; Cen, W.; Liu, Y. F.; Yang, G. P. Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1 H-pyrazoles. Tungsten 2022, 4, 149–157.

[38]

Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by {Mn4PW9} and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem. 2021, 3, 2095–2103.

[39]

Chen, Y. J.; Huang, X. Q.; Chen, Y. F.; Wang, Y. R.; Zhang, H. C.; Li, C. X.; Zhang, L.; Zhu, H. J.; Yang, R. X.; Kan, Y. H. et al. Polyoxometalate-induced efficient recycling of waste polyester plastics into metal-organic frameworks. CCS Chem. 2019, 1, 561–570.

[40]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2 (1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[41]

Uekama, K.; Hirayama, F.; Irie, T. Cyclodextrin drug carrier systems. Chem. Rev. 1998, 98, 2045–2076.

[42]

Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743–1754.

[43]

Bensouilah, N.; Abdaoui, M. Inclusion complex of N-nitroso, N-(2-chloroethyl), N',N'-dibenzylsulfamid with β-Cyclodextrin: Fluorescence and molecular modeling. C. R. Chim. 2012, 15, 1022–1036.

[44]

Ramirez, J.; Ahn, S.; Grigorean, G.; Lebrilla, C. B. Evidence for the formation of gas-phase inclusion complexes with cyclodextrins and amino acids. J. Am. Chem. Soc. 2000, 122, 6884–6890.

[45]

Monflier, E.; Blouet, E.; Barbaux, Y.; Mortreux, A. Wacker oxidation of 1-decene to 2-decanone in the presence of a chemically modified cyclodextrin system: A happy union of host-guest chemistry and homogeneous catalysis. Angew. Chem., Int. Ed. 1994, 33, 2100–2102.

[46]

Izzet, G.; Ménand, M.; Matt, B.; Renaudineau, S.; Chamoreau, L. M.; Sollogoub, M.; Proust, A. Cyclodextrin-induced auto-healing of hybrid polyoxometalates. Angew. Chem., Int. Ed. 2012, 51, 487–490.

[47]

Wu, Y. L.; Shi, R. F.; Wu, Y. L.; Holcroft, J. M.; Liu, Z. C.; Frasconi, M.; Wasielewski, M. R.; Li, H.; Stoddart, J. F. Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 2015, 137, 4111–4118.

[48]

Zhang, B.; Yue, L.; Wang, Y.; Yang, Y.; Wu, L. X. A novel single-side azobenzene-grafted Anderson-type polyoxometalate for recognition-induced chiral migration. Chem. Commun. 2014, 50, 10823–10826.

[49]

Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.

[50]

Zhang, B.; Guan, W. M.; Yin, F. F.; Wang, J. X.; Li, B.; Wu, L. X. Induced chirality and reversal of phosphomolybdate cluster via modulating its interaction with cyclodextrins. Dalton Trans. 2018, 47, 1388–1392.

[51]

Yang, P.; Zhao, W. L.; Shkurenko, A.; Belmabkhout, Y.; Eddaoudi, M.; Dong, X. C.; Alshareef, H. N.; Khashab, N. M. Polyoxometalate-cyclodextrin metal-organic frameworks: From tunable structure to customized storage functionality. J. Am. Chem. Soc. 2019, 141, 1847–1851.

[52]

Li, H. B.; Jiang, F. R.; Zhang, G. H.; Li, B.; Wu, L. X. Cyclodextrin-/photoisomerization-modulated assembly and disassembly of an azobenzene-grafted polyoxometalate cluster. Dalton Trans. 2019, 48, 5168–5175.

[53]

Su, P.; Smith, A. J.; Warneke, J.; Laskin, J. Gas-phase fragmentation of host-guest complexes of cyclodextrins and polyoxometalates. J. Am. Soc. Mass Spectrom. 2019, 30, 1934–1945.

[54]

Khlifi, S.; Marrot, J.; Haouas, M.; Shepard, W. E.; Falaise, C.; Cadot, E. Chaotropic effect as an assembly motif to construct supramolecular cyclodextrin-polyoxometalate-based frameworks. J. Am. Chem. Soc. 2022, 144, 4469–4477.

[55]

Liu, X. H.; Zhang, J. L.; Lan, Y. X.; Zheng, Q.; Xuan, W. M. Infinite building blocks for directed self-assembly of a supramolecular polyoxometalate-cyclodextrin framework for multifunctional oxidative catalysis. Inorg. Chem. Front. 2022, 9, 6534–6543.

[56]

Ge, H. Q.; Leng, Y.; Zhou, C. J.; Wang, J. Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: Cyclodextrins complexes with vanadium-substituted heteropoly acids. Catal. Lett. 2008, 124, 324–329.

[57]

Zou, C. J.; Zhao, P. W.; Shi, L. H.; Huang, S. B.; Luo, P. Y. Biodiesel fuel production from waste cooking oil by the inclusion complex of heteropoly acid with bridged bis-cyclodextrin. Bioresour. Technol. 2013, 146, 785–788.

[58]

Yue, L.; Ai, H.; Yang, Y.; Lu, W. J.; Wu, L. X. Chiral self-assembly and reversible light modulation of a polyoxometalate complex via host-guest recognition. Chem. Commun. 2013, 49, 9770–9772.

[59]

Zhang, B.; Guan, W. M.; Zhang, S. M.; Li, B.; Wu, L. X. Controlled chiral electrochromism of polyoxometalates incorporated in supramolecular complexes. Chem. Commun. 2016, 52, 5308–5311.

[60]

Lin, C. G.; Fura, G. D.; Long, Y.; Xuan, W. M.; Song, Y. F. Polyoxometalate-based supramolecular hydrogels constructed through host-guest interactions. Inorg. Chem. Front. 2017, 4, 789–794.

[61]

Wang, J.; Chen, Y.; Cheng, N.; Feng, L.; Gu, B. H.; Liu, Y. Multivalent supramolecular self-assembly between β-cyclodextrin derivatives and polyoxometalate for photodegradation of dyes and antibiotics. ACS Appl. Bio Mater. 2019, 2, 5898–5904.

[62]

Pacaud, B.; Leclercq, L.; Dechézelles, J. F.; Nardello-Rataj, V. Hybrid core-shell nanoparticles by “plug and play” self-assembly. Chem.—Eur. J. 2018, 24, 17672–17676.

[63]

Ni, L. B.; Li, H.; Xu, H. J.; Shen, C.; Liu, R. Z.; Xie, J.; Zhang, F. M.; Chen, C.; Zhao, H. X.; Zuo, T. F. et al. Self-assembled supramolecular polyoxometalate hybrid architecture as a multifunctional oxidation catalyst. ACS Appl. Mater. Interfaces 2019, 11, 38708–38718.

[64]

Rezvani, M. A.; Khandan, S.; Sabahi, N.; Saeidian, H. Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst. Chin. J. Chem. Eng. 2019, 27, 2418–2426.

[65]

Gao, B.; Li, B.; Wu, L. X. Layered supramolecular network of cyclodextrin triplets with azobenzene-grafting polyoxometalate for dye degradation and partner-enhancement. Chem. Commun. 2021, 57, 10512–10515.

[66]

Li, Q. J.; Wang, D. D.; Fang, X.; Wang, X. Y.; Mao, S.; Ostrikov, K. Function-targeted lanthanide-anchored polyoxometalate-cyclodextrin assembly: Discriminative sensing of inorganic phosphate and organophosphate. Adv. Funct. Mater. 2021, 31, 2104572.

[67]

Xia, Z. Q.; Lin, C. G.; Yang, Y.; Wang, Y. K.; Wu, Z. P.; Song, Y. F.; Russell, T. P.; Shi, S. W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli. Angew. Chem., Int. Ed. 2022, 61, e202203741.

[68]

Qi, Z. Q.; Wang, M. Y.; Shen, J. C.; Lan, Y. Z.; Jiang, Z. G.; Zhan, C. H. Supramolecular hybrids of chiral Waugh polyoxometalate with cyclodextrins. Chem. Commun. 2022, 58, 13616–13619.

[69]

Ni, L. B.; Gu, J.; Jiang, X. Y.; Xu, H. J.; Wu, Z.; Wu, Y.C.; Liu, Y.; Xie, J.; Wei, Y. G.; Diao, G. W. Polyoxometalate-cyclodextrin-based cluster-organic supramolecular framework for polysulfide conversion and guest-host recognition in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202306528.

[70]

Fan, Y. X.; Zhang, Y.; Jia, Q. D.; Cao, J.; Wu, W. J. The stabilizing role of cyclodextrins on Keggin phosphotungstic acid by complexation unveiled by electrospray mass spectrometry. Mass Spectrom. Lett. 2015, 6, 13–16.

[71]

Moussawi, M. A.; Leclerc-Laronze, N.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Cordier, S.; Ponchel, A.; Monflier, E.; Bricout, H.; Landy, D. et al. Polyoxometalate, cationic cluster, and γ-cyclodextrin: From primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 2017, 139, 12793–12803.

[72]

Moussawi, M. A.; Haouas, M.; Floquet, S.; Shepard, W. E.; Abramov, P. A.; Sokolov, M. N.; Fedin, V. P.; Cordier, S.; Ponchel, A.; Monflier, E. et al. Nonconventional three-component hierarchical host-guest assembly based on Mo-blue ring-shaped giant anion, γ-cyclodextrin, and Dawson-type polyoxometalate. J. Am. Chem. Soc. 2017, 139, 14376–14379.

[73]

Fan, Y. X.; Lu, S. F.; Cao, J. A novel inorganic-organic hybrid complex between polyoxometalate and cyclodextrin: Synthesis, structure and catalytic activity. Int. J. Mass Spectrom. 2019, 435, 163–167.

[74]

Falaise, C.; Moussawi, M. A.; Floquet, S.; Abramov, P. A.; Sokolov, M. N.; Haouas, M.; Cadot, E. Probing dynamic library of metal-oxo building blocks with γ-cyclodextrin. J. Am. Chem. Soc. 2018, 140, 11198–11201.

[75]

Guan, W. M.; Wang, G. X.; Ding, J. B.; Li, B.; Wu, L. X. A supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain. Chem. Commun. 2019, 55, 10788–10791.

[76]

Ivanov, A. A.; Falaise, C.; Shmakova, A. A.; Leclerc, N.; Cordier, S.; Molard, Y.; Mironov, Y. V.; Shestopalov, M. A.; Abramov, P. A.; Sokolov, M. N. et al. Cyclodextrin-assisted hierarchical aggregation of dawson-type polyoxometalate in the presence of {Re6Se8} based clusters. Inorg. Chem. 2020, 59, 11396–11406.

[77]

Yao, S.; Falaise, C.; Leclerc, N.; Roch-Marchal, C.; Haouas, M.; Cadot, E. Improvement of the hydrolytic stability of the Keggin molybdo- and tungsto-phosphate anions by cyclodextrins. Inorg. Chem. 2022, 61, 4193–4203.

[78]

Bamba, I. F.; Falaise, C.; Marrot, J.; Atheba, P.; Gbassi, G.; Landy, D.; Shepard, W.; Haouas, M.; Cadot, E. Host-guest complexation between cyclodextrins and hybrid hexavanadates: What are the driving forces? Chem.—Eur. J. 2021, 27, 15516–15527.

[79]

Leclerc, N.; Haouas, M.; Falaise, C.; Al Bacha, S.; Assaud, L.; Cadot, E. Supramolecular association between γ-cyclodextrin and Preyssler-type polyoxotungstate. Molecules 2021, 26, 5126.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 September 2023
Revised: 19 November 2023
Accepted: 26 November 2023
Published: 04 January 2024
Issue date: June 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 21971221 and 21401162), the Yangzhou University Interdisciplinary Research Foundation for Chemistry Discipline of Targeted Support (No. yzuxk202010), High-Level Entrepreneurial and Innovative Talents Program of Yangzhou University, “Qing Lan Project” in Colleges and Universities of Jiangsu Province, Innovation and entrepreneurship training programs for college students in Jiangsu (No. 202211117066Z), and Lvyangjinfeng Talent Program of Yangzhou.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return