Journal Home > Volume 2 , Issue 1

Small-molecule ionic liquids (ILs) are frequently employed as efficient bulk phase modifiers for perovskite materials. However, their inherent characteristics, such as high volatility and ion migration properties, pose challenges in addressing the stability issues associated with perovskite solar cells (PSCs). In this study, we design a poly(IL) with multiple active sites, named poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]pyridine (P[STFSI][PPyri]), as an efficient additive of perovskite materials. The S=O in the sulfonyl group chelates with uncoordinated Pb2+ and forms hydrogen bonds with the organic cations in the perovskite, suppressing the volatilization of the organic cations. The N+ in pyridine can fix halide ions through electrostatic interaction with I and Br ions to prevent halide ion migration. P[STFSI][PPyri] demonstrates the ability to passivate defects and suppress nonradiative recombination in PSCs. Additionally, it facilitates the fixation of organic and halide ions, thereby enhancing the device’s stability and photoelectric performance. Consequently, the introduction of P[STFSI][PPyri] as a dopant in the devices resulted in an excellent efficiency of 24.62%, demonstrating outstanding long-term operational stability, with the encapsulated device maintaining 87.6% of its initial efficiency even after 1500 h of continuous maximum power point tracking. This strategy highlights the promising potential of poly(IL) as an effective additive for PSCs, providing a combination of high performance and stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Efficiency enhancement to 24.62% in inverted perovskite solar cells through poly (ionic liquid) bulk modification

Show Author's information Xingyuan Chen1,2,Tong Wang1,2,Jiabao Yang1,2Xingyu Pu1,2Hui Chen1,2Bingxiu Xue3Long Jiang4( )Jianbo Yin3( )Qi Cao1,2( )Xuanhua Li1,2( )
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
Smart Materials Laboratory, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi’an 710077, China

Xingyuan Chen and Tong Wang contributed equally to this work.

Abstract

Small-molecule ionic liquids (ILs) are frequently employed as efficient bulk phase modifiers for perovskite materials. However, their inherent characteristics, such as high volatility and ion migration properties, pose challenges in addressing the stability issues associated with perovskite solar cells (PSCs). In this study, we design a poly(IL) with multiple active sites, named poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]pyridine (P[STFSI][PPyri]), as an efficient additive of perovskite materials. The S=O in the sulfonyl group chelates with uncoordinated Pb2+ and forms hydrogen bonds with the organic cations in the perovskite, suppressing the volatilization of the organic cations. The N+ in pyridine can fix halide ions through electrostatic interaction with I and Br ions to prevent halide ion migration. P[STFSI][PPyri] demonstrates the ability to passivate defects and suppress nonradiative recombination in PSCs. Additionally, it facilitates the fixation of organic and halide ions, thereby enhancing the device’s stability and photoelectric performance. Consequently, the introduction of P[STFSI][PPyri] as a dopant in the devices resulted in an excellent efficiency of 24.62%, demonstrating outstanding long-term operational stability, with the encapsulated device maintaining 87.6% of its initial efficiency even after 1500 h of continuous maximum power point tracking. This strategy highlights the promising potential of poly(IL) as an effective additive for PSCs, providing a combination of high performance and stability.

Keywords: defect passivation, inverted perovskite solar cells, bulk modification

References(49)

[1]

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051.

[2]

Huang, Z. J., Bai, Y., Huang, X. D., Li, J. T., Wu, Y. T., Chen, Y. H., Li, K. L., Niu, X. X., Li, N. X., Liu, G. L., et al. (2023). Anion-π interactions suppress phase impurities in FAPbI3 solar cells. Nature 623, 531–537.

[3]

Liang, Z., Zhang, Y., Xu, H. F., Chen, W. J., Liu, B. Y., Zhang, J. Y., Zhang, H., Wang, Z. H., Kang, D. H., Zeng, J. R., et al. (2023). Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 624, 557–563.

[4]

Li, X. D., Zhang, W. X., Guo, X. M., Lu, C. Y., Wei, J. Y., Fang, J. F. (2022). Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375, 434–437.

[5]

Liu, S. W., Biju, V. P., Qi, Y. B., Chen, W., Liu, Z. H. (2023). Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 15, 27.

[6]

Sun, S. Q., Xu, X. W., Sun, Q., Yao, Q., Cai, Y. T., Li, X. Y., Xu, Y. L., He, W., Zhu, M., Lv, X., et al. (2023). All-inorganic perovskite-based monolithic perovskite/organic tandem solar cells with 23.21% efficiency by dual-interface engineering. Adv. Energy Mater. 13, 2204347.

[7]

Zhu, J. W., He, B. L., Zhang, W. Y., Tui, R., Chen, H. Y., Duan, Y. Y., Huang, H., Duan, J. L., Tang, Q. W. (2022). Defect-dependent crystal plane control on inorganic CsPbBr3 film by selectively anchoring (pseudo-) halide anions for 1.650 V voltage perovskite solar cells. Adv. Funct. Mater. 32, 2206838.

[8]

Wu, N., Yang, T. H., Wang, Z. C., Wu, Y., Wang, Y. J., Ma, C., Li, H. J., Du, Y. C., Zhao, D., Wang, S., et al. (2023). Stabilizing precursor solution and controlling crystallization kinetics simultaneously for high-performance perovskite solar cells. Adv. Mater. 35, 2304809.

[9]

Martani, S., Zhou, Y., Poli, I., Aktas, E., Meggiolaro, D., Jiménez-López, J., Wong, E. L., Gregori, L., Prato, M., Di Girolamo, D., et al. (2023). Defect engineering to achieve photostable wide bandgap metal halide perovskites. ACS Energy Lett. 8, 2801–2808.

[10]

Tian, X. Y., Zhang, S., Shen, Z. T., Zhang, B., Hong, Y. Q., Liu, R., Liu, Y., Cao, R. R., Song, J., Li, H. L., et al. (2024). Functional 1,3-DTu additive in perovskite layer for stable triple-cation perovskite solar cells with efficiency exceeding 23%. Sol. RRL 8, 2300810.

[11]

Ni, Z. Y., Jiao, H. Y., Fei, C. B., Gu, H. Y., Xu, S., Yu, Z. H., Yang, G., Deng, Y. H., Jiang, Q., Liu, Y., et al. (2022). Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination. Nat. Energy 7, 65–73.

[12]

Shen, X. Y., Gallant, B. M., Holzhey, P., Smith, J. A., Elmestekawy, K. A., Yuan, Z. C., Rathnayake, P. V. G. M., Bernardi, S., Dasgupta, A., Kasparavicius, E., et al. (2023). Chloride-based additive engineering for efficient and stable wide-bandgap perovskite solar cells. Adv. Mater. 35, 2211742.

[13]

Dörflinger, P., Ding, Y., Schmid, V., Armer, M., Turnell-Ritson, R. C., Ding, B., Dyson, P. J., Nazeeruddin, M. K., Dyakonov, V. (2023). Influence of an organic salt-based stabilizing additive on charge carrier dynamics in triple cation perovskite solar cells. Adv. Sci. 10, 2304502.

[14]

Wang, R., Altujjar, A., Zibouche, N., Wang, X. L., Spencer, B. F., Jia, Z. Y., Thomas, A. G., Mokhtar, M. Z., Cai, R. S., Haigh, S. J., et al. (2023). Improving the efficiency and stability of perovskite solar cells using π-conjugated aromatic additives with differing hydrophobicities. Energy Environ. Sci. 16, 2646–2657.

[15]

Zou, Y. Q., Eichhorn, J., Rieger, S., Zheng, Y. T., Yuan, S., Wolz, L., Spanier, L. V., Heger, J. E., Yin, S. S., Everett, C. R., et al. (2023). Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy 112, 108449.

[16]

Wang, T., Li, Y. K., Cao, Q., Yang, J. B., Yang, B. W., Pu, X. Y., Zhang, Y. Z., Zhao, J. S., Zhang, Y. X., Chen, H., et al. (2022). Deep defect passivation and shallow vacancy repair via an ionic silicone polymer toward highly stable inverted perovskite solar cells. Energy Environ. Sci. 15, 4414–4424.

[17]

Yang, H. R., Peng, M., Yi, W. D., Jiang, H. Q., Cheng, G. J. (2023). Oriented perovskite film from laser recrystallization in magnetic field. Adv. Mater. 35, 2303635.

[18]

Wang, Y. L., Yang, Y. F., Li, N., Hu, M., Raga, S. R., Jiang, Y., Wang, C., Zhang, X. L., Lira-Cantu, M., Huang, F. Z., et al. (2022). Ionic liquid stabilized perovskite solar modules with power conversion efficiency exceeding 20%. Adv. Funct. Mater. 32, 2204396.

[19]

Gao, X. X., Ding, B., Kanda, H., Fei, Z. F., Luo, W., Zhang, Y., Shibayama, N., Züttel, A., Tirani, F. F., Scopelliti, R., et al. (2021). Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Rep. Phys. Sci. 2, 100475.

[20]

Zhao, J., Lei, Q., He, F., Zheng, C., Zhao, X. P., Yin, J. B. (2020). Influence of geometry of mobile countercations on conductivity, polarization and electrorheological effect of polymeric anionic liquids at ice point temperature. Polymer 205, 122826.

[21]

Wang, Q., Tang, W. J., Chen, Y. T., Qiu, W. K., Wu, Y. H., Peng, Q. (2023). Over 25% efficiency and stable bromine-free RbCsFAMA-based quadruple cation perovskite solar cells enabled by an aromatic zwitterion. J. Mater. Chem. A 11, 1170–1179.

[22]

Yang, X. Y., Ni, Y., Zhang, Y. Z., Wang, Y. J., Yang, W. Q., Luo, D. Y., Tu, Y. G., Gong, Q. H., Yu, H. F., Zhu, R. (2021). Multiple-defect management for efficient perovskite photovoltaics. ACS Energy Lett. 6, 2404–2412.

[23]

Fan, F. F., Li, Z. P., Tian, H. D., Zhu, M. Z., Zhang, L. B., Wen, L. R., Zhou, Z. M. (2022). Molecular interaction modulates crystallization and defects of perovskite films for high-performance solar cells. ACS Appl. Energy Mater. 5, 10572–10580.

[24]

Wang, Z. T., Tian, Q. W., Zhang, H., Xie, H. D., Du, Y. C., Liu, L., Feng, X. L., Najar, A., Ren, X. D., Liu, S. Z. (2023). Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells. Angew. Chem. Int. Ed. 62, e202305815.

[25]

Gong, C., Zhang, C., Zhuang, Q. X., Li, H. Y., Yang, H., Chen, J. Z., Zang, Z. G. (2023). Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 17.

[26]

Cao, Q., Li, Y. J., Zhang, H., Yang, J. B., Han, J., Xu, T., Wang, S. J., Wang, Z. S., Gao, B. Y., Zhao, J. S., et al. (2021). Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633.

[27]

Zheng, Z. W., Xia, M. H., Chen, X. Y., Xiao, X., Gong, J. W., Liu, J. L., Du, J. K., Tao, Y. R., Hu, Y., Mei, A. Y., et al. (2023). Enhancing the performance of Fa-based printable mesoscopic perovskite solar cells via the polymer additive. Adv. Energy Mater. 13, 2204335.

[28]

Zhuang, R. S., Wang, L. Q., Qiu, J. M., Xie, L., Miao, X. H., Zhang, X. L., Hua, Y. (2023). Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chem. Eng. J. 463, 142449.

[29]

Chen, H., Yang, J. B., Cao, Q., Wang, T., Pu, X. Y., He, X. L., Chen, X. Y., Li, X. H. (2023). π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells. Nano Energy 117, 108883.

[30]

Baumeler, T. P., Alharbi, E. A., Kakavelakis, G., Fish, G. C., Aldosari, M. T., Albishi, M. S., Pfeifer, L., Carlsen, B. I., Yum, J. H., Alharbi, A. S., et al. (2023). Surface passivation of FAPbI3-rich perovskite with cesium iodide outperforms bulk incorporation. ACS Energy Lett. 8, 2456–2462.

[31]
Cao, Q., Wang, T. Y., Pu, X. Y., He, X. L., Xiao, M. C., Chen, H., Zhuang, L. C., Wei, Q., Loi, H. L., Guo, P., et al. (2024). Co-self-assembled monolayers modified NiOx for stable inverted perovskite solar cells. Adv. Mater. in press.
DOI
[32]

Luo, D. Y., Yang, W. Q., Wang, Z. P., Sadhanala, A., Hu, Q., Su, R., Shivanna, R., Trindade, G. F., Watts, J. F., Xu, Z. J. et al. (2018). Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 360, 1442–1446.

[33]

Wang, Q. Q., Jiang, X. Q., Peng, C., Zhang, J. K., Jiang, H. K., Bu, H. K., Yang, G. Y., Wang, H., Zhou, Z. M., Guo, X. (2024). Regulating the lattice strain in perovskite films to obtain efficient and stable perovskite solar cells. Chem. Eng. J. 481, 148464.

[34]

Hu, Q. X., Yang, X. Y., Qi, Y., Wei, P., Cheng, J., Xie, Y. H. (2023). Optimization of perovskite/carbon interface performance using N-doped coal-based graphene quantum dots and its mechanism analysis. J. Energy Chem. 79, 242–252.

[35]

Chen, Y., Xu, Y. M., Liu, J., Lin, Y. X., Hu, J. F., Cao, C. S., Xia, Y. D., Chen, Y. H. (2022). A universal ionic liquid solvent for non-halide lead sources in perovskite solar cells. J. Energy Chem. 71, 445–451.

[36]

Pu, X. Y., Cao, Q., Su, J., Yang, J. B., Wang, T., Zhang, Y. X., Chen, H., He, X. L., Chen, X. Y., Li, X. H. (2023). One-step construction of a perovskite/TiO2 heterojunction toward highly stable inverted all-layer-inorganic CsPbI2Br perovskite solar cells with 17.1% efficiency. Adv. Energy Mater. 13, 2301607.

[37]

Green, M. A. (1982). Accuracy of analytical expressions for solar cell fill factors. Sol. Cells 7, 337–340.

[38]

Cao, Q., Zhang, Y. X., Pu, X. Y., Zhao, J. S., Wang, T., Zhang, K., Chen, H., He, X. L., Yang, J. B., Zhang, C., et al. (2023). Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells. J. Energy Chem. 86, 9–15.

[39]

Wu, Y. T., Chang, B. H., Wang, L., Li, H., Pan, L., Liu, Z., Yin, L. W. (2023). Intrinsic dipole arrangement to coordinate energy levels for efficient and stable perovskite solar cells. Adv. Mater. 35, 2300174.

[40]

Liu, C. C., Su, H. J., Pu, Y., Guo, M., Zhai, P., Liu, Z. K., Zhang, Z. (2023). Deep and shallow level defect passivation via fluoromethyl phosphonate for high performance air-processed perovskite solar cells. Nano Energy 118, 108990.

[41]

Wen, L. L., Deng, Y. X., Zeng, G. Y., Liu, G. Y., Li, X. (2023). Surface-bulk-passivated perovskite films via 2-thiophenemethylammonium bromide and PbBr2 for air-processed perovskite solar cells with high-stability. Chem. Eng. J. 468, 143446.

[42]

Xu, Y. M., Guo, X., Lin, Z. H., Wang, Q. R., Su, J., Zhang, J. C., Hao, Y., Yang, K. K., Chang, J. J. (2023). Perovskite films regulation via hydrogen-bonded polymer network for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 62, e202306229.

[43]

Shen, Y. X., Xu, G. Y., Li, J. J., Lin, X., Yang, F., Yang, H. Y., Chen, W. J., Wu, Y. Y., Wu, X. X., Cheng, Q. R., et al. (2023). Functional ionic liquid polymer stabilizer for high-performance perovskite photovoltaics. Angew. Chem. Int. Ed. 62, e202300690.

[44]

Zhao, W. J., Wu, M. Z., Liu, Z. K., Yang, S. M., Li, Y., Wang, J. G., Yang, L., Han, Y., Liu, S. Z. (2023). Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells. Adv. Energy Mater. 13, 2204260.

[45]

Cao, Y., Feng, J. S., Xu, Z., Zhang, L., Lou, J. J., Liu, Y. C., Ren, X. D., Yang, D., Liu, S. Z. (2023). Bifunctional trifluorophenylacetic acid additive for stable and highly efficient flexible perovskite solar cell. InfoMat 5, e12423.

[46]

Zhang, Y. L., Park, N. G. (2023). Tailoring the functionality of additives for enhancing the stability of perovskite solar cells. Adv. Funct. Mater. 33, 2308577.

[47]

Zhu, H. W., Teale, S., Lintangpradipto, M. N., Mahesh, S., Chen, B., McGehee, M. D., Sargent, E. H., Bakr, O. M. (2023). Long-term operating stability in perovskite photovoltaics. Nat. Rev. Mater. 8, 569–586.

[48]

Geng, S. N., Xiao, Z. W. (2023). Can nitride perovskites provide the same superior optoelectronic properties as lead halide perovskites? ACS Energy Lett. 8, 2051–2057.

[49]
Jia, S. Y., Yang, J. B., Wang, T., Pu, X. Y., Chen, H., He, X. L., Feng, G. P., Chen, X. Y., Bai, Y. J., Cao, Q., et al. (2024). In situ polymerization of water-induced 1,3-phenylene diisocyanate for enhanced efficiency and stability of inverted perovskite solar cells. Interdiscip. Mater. in press.
DOI
File
EMD20240029_ESM.pdf (10 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 February 2024
Revised: 02 March 2024
Accepted: 05 March 2024
Published: 29 March 2024
Issue date: March 2024

Copyright

© The Author(s) 2024. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 22261142666, 52372225, 52172237, 22305191, 21975205); the Science, Technology, and Innovation Commission of Shenzhen Municipality (Grant No. GJHZ20220913143204008); the Shaanxi Science Fund for Distinguished Young Scholars (Grant No. 2022JC-21); and Open Project of State Key Laboratory of Supramolecular Structure and Materials (Grant No. sklssm2022022). We thank the members from the Analytical & Testing Center of Northwestern Polytechnical University for the help of SEM, AFM, XRD, UPS, and XPS characterizations.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return