Journal Home > Volume 1 , Issue 1

Given the abundance of potassium resources, potassium-ion batteries are considered a low-cost alternative to lithium-ion types. However, their electrochemical performance remains rather unsatisfactory because potassium ions have sluggish kinetics and large ionic radius. In this study, NiCo2Se4 nanotube spheres are synthesized as efficient potassium storage hosts via a facile two-step hydrothermal process. The rationally designed electrode has various ameliorating morphological and functional features, including the following: (i) A hollow structure allows for relief of the volume expansion while offering an excellent electrochemical reactivity to accelerate the conversion kinetics; (ii) a high electrical conductivity for enhanced electron transfer; and (iii) myriad vacancies to supply active sites for electrochemical reactions. As such, the electrode delivers an initial reversible capacity of 458.1 mAh g−1 and retains 346.6 mAh g−1 after 300 cycles at 0.03 A g−1. The electrode sustains a high capacity of 101.4 mAh g−1 even at a high current density of 5 A g−1 and outperforms the majority of state-of-the-art anodes in terms of both cyclic capacity and rate capability, especially at above 1.0 A g−1. This study not only proves bimetallic selenides are promising candidates for potassium storage devices but also offers new insight into the rational design of electrode materials for high-rate potassium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Conversion mechanism of NiCo2Se4 nanotube sphere anodes for potassium-ion batteries

Show Author's information Mingyue Wang1,2,Yang Li2,Shanshan Yao2Jiang Cui2Lianbo Ma2Nauman Mubarak2Hongming Zhang2Shujiang Ding1( )Jang-Kyo Kim2,3,4( )
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, “Four Joint Subjects One Union” School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Xi’an Jiaotong University, Xi’an710049, China
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney NSW 2052, Australia
Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates

Mingyue Wang and Yang Li contributed equally to this work.

Abstract

Given the abundance of potassium resources, potassium-ion batteries are considered a low-cost alternative to lithium-ion types. However, their electrochemical performance remains rather unsatisfactory because potassium ions have sluggish kinetics and large ionic radius. In this study, NiCo2Se4 nanotube spheres are synthesized as efficient potassium storage hosts via a facile two-step hydrothermal process. The rationally designed electrode has various ameliorating morphological and functional features, including the following: (i) A hollow structure allows for relief of the volume expansion while offering an excellent electrochemical reactivity to accelerate the conversion kinetics; (ii) a high electrical conductivity for enhanced electron transfer; and (iii) myriad vacancies to supply active sites for electrochemical reactions. As such, the electrode delivers an initial reversible capacity of 458.1 mAh g−1 and retains 346.6 mAh g−1 after 300 cycles at 0.03 A g−1. The electrode sustains a high capacity of 101.4 mAh g−1 even at a high current density of 5 A g−1 and outperforms the majority of state-of-the-art anodes in terms of both cyclic capacity and rate capability, especially at above 1.0 A g−1. This study not only proves bimetallic selenides are promising candidates for potassium storage devices but also offers new insight into the rational design of electrode materials for high-rate potassium-ion batteries.

Keywords: density functional theory (DFT) calculations, conversion reaction mechanism, bimetallic selenide nanotubes, potassium-ion storage

References(60)

[1]

Wu, F. X., Maier, J., Yu, Y. (2020). Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49, 1569–1614.

[2]

Xie, J., Lu, Y. C. (2020). A retrospective on lithium-ion batteries. Nat. Commun. 11, 2499.

[3]

Wang, M., Zhao, H., Du, B., Lu, X., Ding, S., Hu, X. (2023). Functions and applications of emerging metal-organic-framework liquids and glasses. Chem. Commun. 59, 7126–7140.

[4]

Zhang, K. Y., Gu, Z. Y., Ang, E. H., Guo, J. Z., Wang, X. T., Wang, Y. L., Wu, X. L. (2022). Advanced polyanionic electrode materials for potassium-ion batteries: progresses, challenges and application prospects. Mater. Today. 54, 189–201.

[5]

Wang, M., Zhang, H., Cui, J., Yao, S., Shen, X., Park, T. J., Kim, J. K. (2021). Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Mater. 39, 305–346.

[6]

Su, Z. H., Huang, J. H., Wang, R. H., Zhang, Y., Zeng, L. X., Zhang, Y. F., Fan, H. S. (2023). Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K+ batteries. J. Colloid Interf. Sci. 639, 7–13.

[7]

Rajagopalan, R., Tang, Y. G., Ji, X. B., Jia, C. K., Wang, H. Y. (2020). Advancements and challenges in potassium ion batteries: a comprehensive review. Adv. Funct. Mater. 30, 1909486.

[8]

Yuan, F., Li, Z. J., Zhang, D., Wang, Q. J., Wang, H., Sun, H. L., Yu, Q. Y., Wang, W., Wang, B. (2022). Fundamental understanding and research progress on the interfacial behaviors for potassium-ion battery anode. Adv. Sci. 9, 2200683.

[9]

Wu, Y. M., Zhao, H. T., Wu, Z. G., Yue, L. C., Liang, J., Liu, Q., Luo, Y. L., Gao, S. Y., Lu, S. Y., Chen, G., et al. (2021). Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Mater. 34, 483–507.

[10]

Liang, H. J., Gu, Z. Y., Zhao, X. X., Guo, J. Z., Yang, J. L., Li, W. H., Li, B., Liu, Z. M., Sun, Z. H., Zhang, J. P., et al. (2022). Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode. Sci. Bull. 67, 1581–1588.

[11]

Song, K. M., Liu, C. T., Mi, L. W., Chou, S. L., Chen, W. H., Shen, C. Y. (2021). Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 17, 1903194.

[12]

Wang, M., Zhang, H., Chen, C., Zhao, H. Y., Li, L., Lu, D. M., Wang, J. H., Huang, Y., Ding, S. J. (2023). Zeolitic imidazolate framework-derived ZnO polyhedrons wrapped by Co nanoparticle embedded in N-doped carbon for high-performance lithium and potassium storage. J. Alloys Compd. 948, 169677.

[13]

Cui, J., Yao, S., Ihsan-Ul-Haq, M., Mubarak, N., Wang, M., Wu, J., Kim, J. K. (2021). Rational exploration of conversion-alloying reaction based anodes for high-performance K-ion batteries. ACS Mater. Lett. 3, 406–413.

[14]

Zhou, C. C., Zhang, P. L., Liu, J. Z., Zhou, J. J., Wang, W. W., Li, K., Wu, J., Lei, Y. C., Chen, L. Y. (2021). Hierarchical NiCo2Se4 nanoneedles/nanosheets with N-doped 3D porous graphene architecture as free-standing anode for superior sodium ion batteries. J. Colloid Interf. Sci. 587, 260–270.

[15]

Li, L. J., Zhao, J. C., Zhu, Y. Q., Pan, X. F., Wang, H. X., Xu, J. L. (2020). Bimetallic Ni/Co-ZIF-67 derived NiCo2Se4/N-doped porous carbon nanocubes with excellent sodium storage performance. Electrochim. Acta. 353, 136532.

[16]

Ali, Z., Asif, M., Huang, X. X., Tang, T. Y., Hou, Y. L. (2018). Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30, 1802745.

[17]

Zhang, C. Q., Biendicho, J. J., Zhang, T., Du, R. F., Li, J. S., Yang, X. H., Arbiol, J., Zhou, Y. T., Morante, J. R., Cabot, A. (2019). Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29, 1903842.

[18]

Ameri, B., Mohammadi Zardkhoshoui, A., Hosseiny Davarani, S. S. (2021). An advanced hybrid supercapacitor constructed from rugby-ball-like NiCo2Se4 yolk-shell nanostructures. Mater. Chem. Front. 5, 4725–4738.

[19]

Xue, Y. C., Guo, X. M., Wu, M. R., Chen, J. L., Duan, M. T., Shi, J., Zhang, J. H., Cao, F., Liu, Y. J., Kong, Q. H. (2021). Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries. Nano Res. 14, 3598–3607.

[20]

Cabot, A., Ibáñez, M., Guardia, P., Alivisatos, A. P. (2009). Reaction regimes on the synthesis of hollow particles by the Kirkendall effect. J. Am. Chem. Soc. 131, 11326–11328.

[21]

Lin, J. H., Wang, Y. H., Zheng, X. H., Liang, H. Y., Jia, H. N., Qi, J. L., Cao, J., Tu, J. C., Fei, W. D., Feng, J. C. (2018). P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors. Dalton Trans. 47, 8771–8778.

[22]

Xue, Y., Chen, T., Song, S., Kim, P., Bae, J. (2019). DNA-directed fabrication of NiCo2O4 nanoparticles on carbon nanotubes as electrodes for high-performance battery-like electrochemical capacitive energy storage device. Nano Energy. 56, 751–758.

[23]

Deng, Q. X., Wang, M. Q., Liu, X. L., Fan, H. S., Zhang, Y. F., Yang, H. Y. (2022). Ultrathin cobalt nickel selenides (Co0.5Ni0.5Se2) nanosheet arrays anchoring on Ti3C2 MXene for high-performance Na+/K+ batteries. J. Colloid Interf. Sci. 626, 700–709.

[24]

Chen, J., Pan, A. Q., Wang, Y. P., Cao, X. X., Zhang, W. C., Kong, X. Z., Su, Q., Lin, J. D., Cao, G. Z., Liang, S. Q. (2019). Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications. Energy Storage Mater. 21, 97–106.

[25]

Huang, Q. H., Su, W., Zhong, G. B., Xu, K. Q., Yang, C. H. (2023). Bimetal heterostructure NiCo2Se4 anode confined by carbon nano boxes for ultrafast and stable potassium storage. Chem. Eng. J. 460, 141875.

[26]

Wang, J. M., Wang, B. B., Liu, X. J., Bai, J. T., Wang, H., Wang, G. (2020). Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 382, 123050.

[27]

Fan, J. C., Zheng, Y. J., Zhao, Z. S., Guo, W. Y., Zhu, S. (2022). Nitrogen, phosphorus, and sulfur tri-doped carbon a coated NiCo2Se4 needle arrays grown on carbon cloth as binder-free anode for potassium-ion batteries. Fron. Mater. 9, 875684.

[28]

Tian, H. J., Yu, X. C., Shao, H. Z., Dong, L. B., Chen, Y., Fang, X. Q., Wang, C. Y., Han, W. Q., Wang, G. X. (2019). Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 9, 1901560.

[29]

Mahmood, A., Ali, Z., Tabassum, H., Akram, A., Aftab, W., Ali, R., Khan, M. W., Loomba, S., Alluqmani, A., Adil Riaz, M., et al. (2020). Carbon fibers embedded with iron selenide (Fe3Se4) as anode for high-performance sodium and potassium ion batteries. Front. Chem. 8, 408.

[30]

Suo, G. Q., Zhang, J. Q., Li, D., Yu, Q. Y., Wang, W., He, M., Feng, L., Hou, X. J., Yang, Y. L., Ye, X. H., et al. (2020). N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 388, 124396.

[31]

Liu, C. L., Luo, S. H., Huang, H. B., Zhai, Y. C., Wang, Z. W. (2019). Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. ChemSusChem. 12, 873–880.

[32]

Lakshmi, V., Chen, Y., Mikhaylov, A. A., Medvedev, A. G., Sultana, I., Rahman, M., Lev, O., Prikhodchenko, P. V., Glushenkov, A. M. (2017). Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 53, 8272–8275.

[33]

He, Y. Y., Wang, L., Dong, C. F., Li, C. C., Ding, X. Y., Qian, Y. T., Xu, L. Q. (2019). In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 23, 35–45.

[34]

Huang, R. L., Lin, J., Zhou, J. H., Fan, E. S., Zhang, X. X., Chen, R. J., Wu, F., Li, L. (2021). Hierarchical triple-shelled MnCo2O4 hollow microspheres as high-performance anode materials for potassium-ion batteries. Small. 17, 2007597.

[35]

Zhu, X. Q., Gao, J. Y., Li, J., Hu, G. J., Li, J., Zhang, G. Q., Xiang, B. (2020). Self-supporting N-rich Cu2Se/C nanowires for highly reversible, long-life potassium-ion storage. Sustain. Energy Fuels. 4, 2453–2461.

[36]

Han, P. Y., Zhao, Y. (2020). Facilely self-assembled MnS/S-doped reduced graphene oxide network with enhanced performance for potassium-ion battery. Mater. Lett. 264, 127367.

[37]

Yu, Q. Y., Hu, J., Gao, Y. Z., Gao, J. L., Suo, G. Q., Zuo, P. J., Wang, W., Yin, G. P. (2018). Iron sulfide/carbon hybrid cluster as an anode for potassium-ion storage. J. Alloys Compd. 766, 1086–1091.

[38]

Chu, J. H., Wang, W. A., Feng, J. R., Lao, C. Y., Xi, K., Xing, L. D., Han, K., Li, Q., Song, L., Li, P., et al. (2019). Deeply nesting zinc sulfide dendrites in tertiary hierarchical structure for potassium ion batteries: enhanced conductivity from interior to exterior. ACS Nano. 13, 6906–6916.

[39]

Zhang, W. C., Pang, W. K., Sencadas, V., Guo, Z. P. (2018). Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule. 2, 1534–1547.

[40]

Ma, G. Y., Li, C. J., Liu, F., Majeed, M. K., Feng, Z. Y., Cui, Y. H., Yang, J., Qian, Y. T. (2018). Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy. 10, 241–248.

[41]

Liu, D., Huang, X. K., Qu, D. Y., Zheng, D., Wang, G. W., Harris, J., Si, J. Y., Ding, T. Y., Chen, J. H., Qu, D. Y. (2018). Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 52, 1–10.

[42]

Xie, Y. H., Chen, Y., Liu, L., Tao, P., Fan, M. P., Xu, N., Shen, X. W., Yan, C. L. (2017). Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 29, 1702268.

[43]

Xin, W., Chen, N., Wei, Z. X., Wang, C. Z., Chen, G., Du, F. (2021). Self-assembled FeSe2 microspheres with high-rate capability and long-term stability as anode material for sodium- and potassium-ion batteries. Chem. Eur. J. 27, 3745–3752.

[44]

Liu, Y. Z., Yang, C. H., Li, Y. P., Zheng, F. H., Li, Y. J., Deng, Q., Zhong, W. T., Wang, G., Liu, T. Z. (2020). FeSe2/nitrogen-doped carbon as anode material for potassium-ion batteries. Chem. Eng. J. 393, 124590.

[45]

Wu, J., Lu, Z. H., Li, K., Cui, J., Yao, S., Ihsan-ul-Haq, M., Li, B. H., Yang, Q. H., Kang, F., Ciucci, F., et al. (2018). Hierarchical MoS2/carbon microspheres as long-life and high-rate anodes for sodium-ion batteries. J. Mater. Chem. A. 6, 5668–5677.

[46]

Cui, J., Yao, S., Lu, Z. H., Huang, J. Q., Chong, W. G., Ciucci, F., Kim, J. K. (2018). Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS2/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488.

[47]

Liu, X., Yang, L. W., Xu, G. B., Cao, J. X. (2022). Pomegranate-like porous NiCo2Se4 spheres with N-doped carbon as advanced anode materials for Li/Na-ion batteries. Green Energy Environ. 7, 554–565.

[48]

Ji, D. X., Fan, L., Li, L. L., Mao, N., Qin, X. H., Peng, S. J., Ramakrishna, S. (2019). Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon. 142, 379–387.

[49]

Qiu, L. C., Wang, Q. C., Yue, X. Y., Qiu, Q. Q., Li, X. L., Chen, D., Wu, X. J., Zhou, Y. N. (2020). NiCo2Se4 as an anode material for sodium-ion batteries. Electrochem. Commun. 112, 106684.

[50]

Hussain, N., Li, M. X., Tian, B. B., Wang, H. H. (2021). Co3Se4 quantum dots as an ultrastable host material for potassium-ion intercalation. Adv. Mater. 33, 2102164.

[51]

Ge, J. M., Wang, B., Wang, J., Zhang, Q. F., Lu, B. A. (2020). Nature of FeSe2/N-C anode for high performance potassium ion hybrid capacitor. Adv. Energy Mater. 10, 1903277.

[52]

Lei, Y., Han, D., Dong, J. H., Qin, L., Li, X. J., Zhai, D. Y., Li, B. H., Wu, Y. Y., Kang, F. Y. (2020). Unveiling the influence of electrode/electrolyte interface on the capacity fading for typical graphite-based potassium-ion batteries. Energy Storage Mater. 24, 319–328.

[53]

Zheng, J., Yang, Y., Fan, X. L., Ji, G. B., Ji, X., Wang, H. Y., Hou, S., Zachariah, M. R., Wang, C. S. (2019). Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 12, 615–623.

[54]

Zhao, S. Q., Liu, Z. C., Xie, G. S., Guo, X., Guo, Z. Q., Song, F., Li, G. H., Chen, C., Xie, X. Q., Zhang, N., et al. (2021). Achieving high-performance 3D K+-pre-intercalated Ti3C2Tx mxene for potassium-ion hybrid capacitors via regulating electrolyte solvation structure. Angew. Chem. Int. Ed. 60, 26246–26253.

[55]

Wang, H. W., Zhai, D. Y., Kang, F. (2020). Solid electrolyte interphase (SEI) in potassium ion batteries. Energy Environ. Sci. 13, 4583–4608.

[56]

Li, H. M., Qian, X., Zhu, C. L., Jiang, X. C., Shao, L., Hou, L. X. (2017). Template synthesis of CoSe2/Co3Se4 nanotubes: tuning of their crystal structures for photovoltaics and hydrogen evolution in alkaline medium. J. Mater. Chem. A. 5, 4513–4526.

[57]

Perdew, J. P., Burke, K., Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868.

[58]

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., et al. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21, 395502.

[59]

Blöchl, P. E. (1994). Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979.

[60]

Sanville, E., Kenny, S. D., Smith, R., Henkelman, G. (2007). Improved grid-based algorithm for bader charge allocation. J. Comput. Chem. 28, 899–908.

File
EMD-2023-0001_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 July 2023
Revised: 18 August 2023
Accepted: 23 August 2023
Published: 14 September 2023
Issue date: September 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

The research project was financially supported by the Research Grants Council (GRF project 16208718), the Innovation and Technology Commission (ITF project ITS/001/17) of Hong Kong SAR, and the National Natural Science Foundation of China (No. 52202297). Part of the work was carried out when Mingyue Wang was a visiting PhD student at the Hong Kong University of Science and Technology (HKUST). The authors appreciate the technical assistance from the Advanced Engineering Materials Facilities and the Materials Characterization and Preparation Facilities at HKUST. We acknowledge Chang Huang at the Instrument Analysis Center of Xi’an Jiaotong University for the assistance with XRD analysis.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return