Journal Home > Online First

Conversion of carbon dioxide (CO2) to C1 products such as carbon monoxide (CO) is a critical step towards carbon valorization. The conversion has been largely carried out through the reverse water gas shift (RWGS) reaction using noble metal catalysts or copper-based nanostructures. Similarities in the electronic structures between beta phase molybdenum carbides (β-Mo2C) and platinum-group metals make them promising alternatives to traditional catalysts. In this work, we studied the effect of oxide supports (MOx, M = Al, Ce, Mg, Si, and Ti) on the formation and catalytic properties of β-Mo2C nanoparticle catalysts. The β-Mo2C/SiO2 catalyst exhibited a mass activity of 372 μmolCO2 gMo2C1∙s−1 at 400 °C and 1109 μmolCO2 gMo2C1∙s−1 at 600 °C for the conversion of CO2. The β-Mo2C/SiO2 catalysts also maintained selectivity and showed structural stability in the on-stream study. The enhanced catalytic performance could be attributed to the size of nanocatalysts (4.7 nm), whereas the stability is related to the interaction with SiO2 and the low H2:CO2 feed ratio. This work highlights the application of amorphous silica in preparing metal carbide nanocatalysts. The rich defects and surface vacancies in the silica support greatly facilitate the high-rate and highly selective processes towards the valorization of CO2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Valorization of carbon dioxide into C1 product via reverse water gas shift reaction using oxide-supported molybdenum carbides

Show Author's information Andrew N. Kuhn1,3Rachel C. Park1Siying Yu1Di Gao1Cheng Zhang1Yuanhui Zhang2Hong Yang1 ( )
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA
Department of Agricultural & Biological Engineering, University of Illinois at Urbana-Champaign, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA
Present address: College of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA 23284, USA

Abstract

Conversion of carbon dioxide (CO2) to C1 products such as carbon monoxide (CO) is a critical step towards carbon valorization. The conversion has been largely carried out through the reverse water gas shift (RWGS) reaction using noble metal catalysts or copper-based nanostructures. Similarities in the electronic structures between beta phase molybdenum carbides (β-Mo2C) and platinum-group metals make them promising alternatives to traditional catalysts. In this work, we studied the effect of oxide supports (MOx, M = Al, Ce, Mg, Si, and Ti) on the formation and catalytic properties of β-Mo2C nanoparticle catalysts. The β-Mo2C/SiO2 catalyst exhibited a mass activity of 372 μmolCO2 gMo2C1∙s−1 at 400 °C and 1109 μmolCO2 gMo2C1∙s−1 at 600 °C for the conversion of CO2. The β-Mo2C/SiO2 catalysts also maintained selectivity and showed structural stability in the on-stream study. The enhanced catalytic performance could be attributed to the size of nanocatalysts (4.7 nm), whereas the stability is related to the interaction with SiO2 and the low H2:CO2 feed ratio. This work highlights the application of amorphous silica in preparing metal carbide nanocatalysts. The rich defects and surface vacancies in the silica support greatly facilitate the high-rate and highly selective processes towards the valorization of CO2.

Keywords: molybdenum carbide, reverse water gas shift reaction, carbon dioxide valorization

References(46)

[1]

Davis, S. J.; Caldeira, K.; Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010, 329, 1330–1333.

[2]

Baxter, J.; Bian, Z. X.; Chen, G.; Danielson, D.; Dresselhaus, M. S.; Fedorov, A. G.; Fisher, T. S.; Jones, C. W.; Maginn, E.; Kortshagen, U. et al. Nanoscale design to enable the revolution in renewable energy. Energy Environ. Sci. 2009, 2, 559–588.

[3]

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

[4]

Kubas, D.; Semmel, M.; Salem, O.; Krossing, I. Is direct DME synthesis superior to methanol production in carbon dioxide valorization? From thermodynamic predictions to experimental confirmation. ACS Catal. 2023, 13, 3960–3970.

[5]

Centi, G.; Quadrelli, E. A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731.

[6]

Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem. Rev. 2020, 120, 7984–8034.

[7]

Ojeda, M.; Nabar, R.; Nilekar, A. U.; Ishikawa, A.; Mavrikakis, M.; Iglesia, E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis. J. Catal. 2010, 272, 287–297.

[8]

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

[9]

Jhong, H. R. M.; Ma, S. C.; Kenis, P. J. A. Electrochemical conversion of CO2 to useful chemicals: Current status, remaining challenges, and future opportunities. Curr. Opin. Chem. Eng. 2013, 2, 191–199.

[10]

Lu, X. F.; Liu, Y.; He, Y. R.; Kuhn, A. N.; Shih, P. C.; Sun, C. J.; Wen, X. D.; Shi, C.; Yang, H. Cobalt-based nonprecious metal catalysts derived from metal-organic frameworks for high-rate hydrogenation of carbon dioxide. ACS Appl. Mater. Interfaces 2019, 11, 27717–27726.

[11]

Daza, Y. A.; Kuhn, J. N. CO2 conversion by reverse water gas shift catalysis: Comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. 2016, 6, 49675–49691.

[12]

Yusuf, N.; Almomani, F.; Qiblawey, H. Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel 2023, 345, 128178.

[13]

Das, S.; Pérez-Ramírez, J.; Gong, J. L.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2. Chem. Soc. Rev. 2020, 49, 2937–3004.

[14]

Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

[15]

Najimu, M.; Jo, S.; Gilliard-AbdulAziz, K. L. Co-exsolution of Ni-based alloy catalysts for the valorization of carbon dioxide and methane. Acc. Chem. Res. 2023, 56, 3132–3141.

[16]

Jurković, D. L.; Pohar, A.; Dasireddy, V. D. B. C.; Likozar, B. Effect of copper-based catalyst support on Reverse Water-Gas Shift Reaction (RWGS) activity for CO2 reduction. Chem. Eng. Technol. 2017, 40, 973–980.

[17]

Jurković, D. L.; Prašnikar, A.; Pohar, A.; Likozar, B. Surface structure-based CO2 reduction reaction modelling over supported copper catalysts. J. CO2 Util. 2020, 41, 101234.

[18]

Kopač, D.; Likozar, B.; Huš, M. How size matters: Electronic, cooperative, and geometric effect in perovskite-supported copper catalysts for CO2 reduction. ACS Catal. 2020, 10, 4092–4102.

[19]

Zhang, X.; Zhu, X. B.; Lin, L. L.; Yao, S. Y.; Zhang, M. T.; Liu, X.; Wang, X. P.; Li, Y. W.; Shi, C.; Ma, D. Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the Reverse Water Gas Shift (RWGS) reaction. ACS Catal. 2017, 7, 912–918.

[20]

Ronda-Lloret, M.; Rico-Francés, S.; Sepúlveda-Escribano, A.; Ramos-Fernandez, E. V. CuO x /CeO2 catalyst derived from metal organic framework for reverse water-gas shift reaction. Appl. Catal. A Gen. 2018, 562, 28–36.

[21]

Zhang, X.; Shi, C.; Chen, B. B.; Kuhn, A. N.; Ma, D.; Yang, H. Progress in hydrogen production over transition metal carbide catalysts: Challenges and opportunities. Curr. Opin. Chem. Eng. 2018, 20, 68–77.

[22]

Morse, J. R.; Juneau, M.; Baldwin, J. W.; Porosoff, M. D.; Willauer, H. D. Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction. J. CO2 Util. 2020, 35, 38–46.

[23]

Dasireddy, V. D. B. C.; Vengust, D.; Likozar, B.; Kovač, J.; Mrzel, A. Production of syngas by CO2 reduction through Reverse Water-Gas Shift (RWGS) over catalytically-active molybdenum-based carbide, nitride and composite nanowires. Renew. Energy 2021, 176, 251–261.

[24]

Figueras, M.; Gutiérrez, R. A.; Viñes, F.; Ramírez, P. J.; Rodriguez, J. A.; Illas, F. Supported molybdenum carbide nanoparticles as an excellent catalyst for CO2 hydrogenation. ACS Catal. 2021, 11, 9679–9687.

[25]

Juneau, M.; Yaffe, D.; Liu, R. J.; Agwara, J. N.; Porosoff, M. D. Establishing tungsten carbides as active catalysts for CO2 hydrogenation. Nanoscale 2022, 14, 16458–16466.

[26]

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

[27]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[28]

Yao, S. Y.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W. Q.; Ye, Y. F.; Lin, L. L.; Wen, X. D.; Liu, P.; Chen, B. B. et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science 2017, 357, 389–393.

[29]

Zhang, Q.; Pastor-Pérez, L.; Jin, W.; Gu, S.; Reina, T. R. Understanding the promoter effect of Cu and Cs over highly effective β-Mo2C catalysts for the reverse water-gas shift reaction. Appl. Catal. B Environ. 2019, 244, 889–898.

[30]

Carrasquillo-Flores, R.; Ro, I.; Kumbhalkar, M. D.; Burt, S.; Carrero, C. A.; Alba-Rubio, A. C.; Miller, J. T.; Hermans, I.; Huber, G. W.; Dumesic, J. A. Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 2015, 137, 10317–10325.

[31]

Vitale, G.; Guzmán, H.; Frauwallner, M. L.; Scott, C. E.; Pereira-Almao, P. Synthesis of nanocrystalline molybdenum carbide materials and their characterization. Catal. Today 2015, 250, 123–133.

[32]

Baddour, F. G.; Roberts, E. J.; To, A. T.; Wang, L.; Habas, S. E.; Ruddy, D. A.; Bedford, N. M.; Wright, J.; Nash, C. P.; Schaidle, J. A. et al. An exceptionally mild and scalable solution-phase synthesis of molybdenum carbide nanoparticles for thermocatalytic CO2 hydrogenation. J. Am. Chem. Soc. 2020, 142, 1010–1019.

[33]

Porosoff, M. D.; Kattel, S.; Li, W. H.; Liu, P.; Chen, J. G. Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem. Commun. 2015, 51, 6988–6991.

[34]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[35]

Zhang, X.; Liu, Y.; Zhang, M. T.; Yu, T.; Chen, B. B.; Xu, Y.; Crocker, M.; Zhu, X. B.; Zhu, Y. C.; Wang, R. M. et al. Synergy between β-Mo2C nanorods and non-thermal plasma for selective CO2 reduction to CO. Chem 2020, 6, 3312–3328.

[36]

Abou Hamdan, M.; Nassereddine, A.; Checa, R.; Jahjah, M.; Pinel, C.; Piccolo, L.; Perret, N. Supported molybdenum carbide and nitride catalysts for carbon dioxide hydrogenation. Front. Chem. 2020, 8, 452.

[37]

Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547–549.

[38]

Dos Santos Politi, J. R.; Viñes, F.; Rodriguez, J. A.; Illas, F. Atomic and electronic structure of molybdenum carbide phases: Bulk and low miller-index surfaces. Phys. Chem. Chem. Phys. 2013, 15, 12617–12625.

[39]

Liu, X. Y.; Kunkel, C.; Ramírez De La Piscina, P.; Homs, N.; Viñes, F.; Illas, F. Effective and highly selective CO generation from CO2 using a polycrystalline α-Mo2C catalyst. ACS Catal. 2017, 7, 4323–4335.

[40]

Xiong, K.; Zhou, G. L.; Zhang, H. D.; Shen, Y.; Zhang, X. M.; Zhang, Y. H.; Li, J. L. Bridging Mo2C-C and highly dispersed copper by incorporating N-functional groups to greatly enhance the catalytic activity and durability for carbon dioxide hydrogenation. J. Mater. Chem. A 2018, 6, 15510–15516.

[41]

Kuhn, A. N.; Chen, Z. T.; Lu, Y. Q.; Yang, H. Sequential oxygen reduction and adsorption for carbon dioxide purification for flue gas applications. Energy Technol. 2019, 7, 1800917.

[42]

Kuhn, A. N.; Ma, Y. L.; Zhang, C.; Chen, Z. T.; Liu, M. Y.; Lu, Y. Q.; Yang, H. Selective reduction of oxygen on non-noble metal copper nanocatalysts. Energy Technol. 2020, 8, 1901213.

[43]

Ma, Y.; Guo, Z. L.; Jiang, Q.; Wu, K. H.; Gong, H. M.; Liu, Y. F. Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction. J. Energy Chem. 2020, 50, 37–43.

[44]

Jurado, A.; Morales-García, Á.; Viñes, F.; Illas, F. Molecular mechanism and microkinetic analysis of the reverse water gas shift reaction heterogeneously catalyzed by the Mo2C MXene. ACS Catal. 2022, 12, 15658–15667.

[45]

Porosoff, M. D.; Yang, X. F.; Boscoboinik, J. A.; Chen, J. G. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew. Chem., Int. Ed. 2014, 53, 6705–6709.

[46]

Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 2017, 10, 2408–2415.

File
0011_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 06 February 2024
Revised: 25 March 2024
Accepted: 31 March 2024
Published: 30 April 2024

Copyright

© The Author(s) 2024.

Acknowledgements

Acknowledgements

This work is supported by the University of Illinois, Urbana-Champaign start-up fund. Electron microscopy characterizations and X-ray fluorescence were carried out at the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. The X-ray diffraction was carried out at the George L. Clark X-ray Facility and 3M Materials Laboratory, School of Chemical Science at UIUC.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See https://creativecommons.org/licenses/by/4.0/.

Return