Journal Home > Volume 16 , Issue 4

Ni-based transition metal nitrides (TMNs) have been regarded as promising substitutes for noble-metal electrocatalysts towards the hydrogen evolution reaction (HER) due to their low cost, excellent chemical stability, high electronic conductivity, and unique electronic structure. However, facile green synthesis and rational microstructure design of Ni-based TMNs electrocatalysts with high HER activity remain challenging. In this work, we report the fabrication of Ni/Ni3N heterostructure nanoarrays on carbon paper via a one-step magnetron sputtering method under low temperature and N2 atmosphere. The Ni/Ni3N hierarchical nanoarrays exhibit an excellent HER catalytic activity with a low overpotential of 37 mV at 10 mA·cm−2 and robust long-term durability over 100 h. Furthermore, the Ni/Ni3N||NiFeOH (NiFeOH = NiFe bimetallic hydroxide) electrolyzer requires a small voltage of 1.54 V to obtain 10 mA·cm−2 for water electrolysis. Density functional theory (DFT) calculations reveal that the heterointerface between Ni and Ni3N could directly induce electron redistribution to optimize the electronic structure, which accelerates the dissociation of water molecules and the subsequent hydrogen desorption, and thus boosting the HER kinetics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Heterointerface engineering of Ni/Ni3N hierarchical nanoarrays for efficient alkaline hydrogen evolution

Show Author's information Zhengbing Qi1Ye Zeng2Zhuo Hou1Weijie Zhu2Binbin Wei1,3( )Yong Yang1Bilan Lin1Hanfeng Liang2( )
Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Ni-based transition metal nitrides (TMNs) have been regarded as promising substitutes for noble-metal electrocatalysts towards the hydrogen evolution reaction (HER) due to their low cost, excellent chemical stability, high electronic conductivity, and unique electronic structure. However, facile green synthesis and rational microstructure design of Ni-based TMNs electrocatalysts with high HER activity remain challenging. In this work, we report the fabrication of Ni/Ni3N heterostructure nanoarrays on carbon paper via a one-step magnetron sputtering method under low temperature and N2 atmosphere. The Ni/Ni3N hierarchical nanoarrays exhibit an excellent HER catalytic activity with a low overpotential of 37 mV at 10 mA·cm−2 and robust long-term durability over 100 h. Furthermore, the Ni/Ni3N||NiFeOH (NiFeOH = NiFe bimetallic hydroxide) electrolyzer requires a small voltage of 1.54 V to obtain 10 mA·cm−2 for water electrolysis. Density functional theory (DFT) calculations reveal that the heterointerface between Ni and Ni3N could directly induce electron redistribution to optimize the electronic structure, which accelerates the dissociation of water molecules and the subsequent hydrogen desorption, and thus boosting the HER kinetics.

Keywords: magnetron sputtering, electrocatalyst, hydrogen evolution reaction, heterointerface engineering, transition metal nitrides

References(62)

[1]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[2]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[3]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[4]
Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res., in press, https://doi.org/10.1007/s12274-022-5060-5.
[5]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[6]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[7]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[8]

Zhuang, Z. C.; Huan, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[9]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[10]
Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. A.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.
[11]
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202212335.
[12]

Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H. S.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 2021, 4, 850–859.

[13]

Tan, H.; Tang, B.; Lu, Y.; Ji, Q. Q.; Lv, L. Y.; Duan, H. L.; Li, N.; Wang, Y.; Feng, S. H.; Li, Z. et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 2022, 13, 2024.

[14]

Chang, C.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, S. J.; Zhuang, Z. C.; Liu, S. J.; Li, J. M.; Liu, X.; Zhao, Q. Amorphous molybdenum sulfide and its Mo-S motifs: Structural characteristics, synthetic strategies, and comprehensive applications. Nano Res. 2022, 15, 8613–8635.

[15]

Chen, Q.; Wei, B.; Wei, Y.; Zhai, P. B.; Liu, W.; Gu, X. K.; Yang, Z. L.; Zuo, J. H.; Zhang, R. F.; Gong, Y. J. Synergistic effect in ultrafine PtNiP nanowires for highly efficient electrochemical hydrogen evolution in alkaline electrolyte. Appl. Catal. B: Environ. 2022, 301, 120754.

[16]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[17]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[18]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[19]

Huang, X. K.; Xu, X. P.; Li, C.; Wu, D. F.; Cheng, D. J.; Cao, D. P. Vertical CoP nanoarray wrapped by N, P-doped carbon for hydrogen evolution reaction in both acidic and alkaline conditions. Adv. Energy Mater. 2019, 9, 1803970.

[20]
Sun, Y. K.; Sun, W. Y.; Chen, L. H.; Meng, A. L.; Li, G. C.; Wang, L.; Huang, J. F.; Song, A. L.; Zhang, Z. H.; Li, Z. J. Surface reconstruction, doping and vacancy engineering to improve the overall water splitting of CoP nanoarrays. Nano Res., in press, https://doi.org/10.1007/s12274-022-4702-y.
[21]
Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal–nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res., in press, https://doi.org/10.1007/s12274-022-4901-6.
[22]
Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater., in press, https://doi.org/10.1007/s40843-022-2116-3.
[23]

Jin, H. Y.; Zhang, H.; Chen, J. Y.; Mao, S. J.; Jiang, Z.; Wang, Y. A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 10967–10975.

[24]

Yu, F.; Zhou, H. Q.; Zhu, Z.; Sun, J. Y.; He, R.; Bao, J. M.; Chen, S.; Ren, Z. F. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation. ACS Catal. 2017, 7, 2052–2057.

[25]

Zeng, Y.; Cao, Z.; Liao, J. Z.; Liang, H. F.; Wei, B. B.; Xu, X.; Xu, H. W.; Zheng, J. X.; Zhu, W. J.; Cavallo, L. et al. Construction of hydroxide p-n junction for water splitting electrocatalysis. Appl. Catal. B: Environ. 2021, 292, 120160.

[26]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[27]

Theerthagiri, J.; Lee, S. J.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805.

[28]

Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

[29]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song. C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[30]

Zhang, D. D.; Li, H. B.; Riaz, A.; Sharma, A.; Liang, W. S.; Wang, Y.; Chen, H. J.; Vora, K.; Yan, D.; Su, Z. et al. Unconventional direct synthesis of Ni3N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy Environ. Sci. 2022, 15, 185–195.

[31]

Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.

[32]

Zhang, J. H.; Liu, Y.; Li, J. M.; Jin, X.; Li, Y. P.; Qian, Q. Z.; Wang, Y. X.; El-Harairy, A.; Li, Z. Y.; Zhu, Y. et al. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881–3890.

[33]

Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Correction: Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3611–3611.

[34]

Wu, Y. S.; Xie, Y. F.; Niu, S. W.; Zang, Y. P.; Cai, J. Y.; Bian, Z. N.; Yin, X. W.; Fang, Y. Y.; Sun, D.; Niu, D. et al. Accelerating water dissociation kinetics of Ni3N by tuning interfacial orbital coupling. Nano Res. 2021, 14, 3458–3465.

[35]

Yin, Z. X.; Sun, Y.; Zhu, C. L.; Li, C. Y.; Zhang, X. T.; Chen, Y. J. Bimetallic Ni-Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658.

[36]

Hu, Y. W.; Xiong, T. Z.; Balogun, M. S. J. T.; Huang, Y. C.; Adekoya, D.; Zhang, S. Q.; Tong, Y. X. Enhanced metallicity boosts hydrogen evolution capability of dual-bimetallic Ni-Fe nitride nanoparticles. Mater. Today Phys. 2020, 15, 100267.

[37]

Tang, S. S.; Ouyang, B.; Tan, H.; Zhou, W. Q.; Ma, Z. X.; Zhang, Y. Q. Generic synthesis of bimetallic nitride nanopore arrays as efficient electrocatalysts for hydrogen evolution reaction. Electrochim. Acta 2020, 362, 137222.

[38]

Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369.

[39]

Jiang, G. M.; Shi, X. L.; Cui, M. Y.; Wang, W. L.; Wang, P.; Johnson, G.; Nie, Y. D.; Lv, X. S.; Zhang, X. M.; Dong, F. et al. Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. ACS Appl. Mater. Interfaces 2021, 13, 4072–4083.

[40]

Wang, T. T.; Wang, M.; Yang, H.; Xu, M. Q.; Zuo, C. D.; Feng, K.; Xie, M.; Deng, J.; Zhong, J.; Zhou, W. et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution. Energy Environ. Sci. 2019, 12, 3522–3529.

[41]

Xu, X. J.; Hou, X. B.; Du, P. Y.; Zhang, C. H.; Zhang, S. C.; Wang, H. L.; Toghan, A.; Huang, M. H. Controllable Ni/NiO interface engineering on N-doped carbon spheres for boosted alkaline water-to-hydrogen conversion by urea electrolysis. Nano Res. 2022, 15, 7124–7133.

[42]
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202213318.
[43]

Wei, B. B.; Liang, H. F.; Qi, Z. B.; Zhang, D. F.; Shen, H.; Hu, W. S.; Wang, Z. C. Construction of 3D Si@Ti@TiN thin film arrays for aqueous symmetric supercapacitors. Chem. Commun. 2019, 55, 1402–1405.

[44]

Wei, B. B.; Liang, H. F.; Zhang, D. F.; Wu, Z. T.; Qi, Z. B.; Wang, Z. C. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors. J. Mater. Chem. A 2017, 5, 2844–2851.

[45]

Wei, B. B.; Mei, G.; Liang, H. F.; Qi, Z. B.; Zhang, D. F.; Shen, H.; Wang, Z. C. Porous CrN thin films by selectively etching CrCuN for symmetric supercapacitors. J. Power Sources 2018, 385, 39–44.

[46]

Liang, J.; Liu, Q.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Zhang, F.; Asiri, A. M.; Sun, X. P. Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chem. 2021, 23, 2834–2867.

[47]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[48]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[49]

Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

[50]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[51]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.

[52]

Gao, X. R.; Liu, X. M.; Zang, W. J.; Dong, H. L.; Pang, Y. J.; Kou, Z. K.; Wang, P. Y.; Pan, Z. H.; Wei, S. R.; Mu, S. C. et al. Synergizing in-grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self-adaptive surface reconfiguration and efficient oxygen evolution reaction. Nano Energy 2020, 78, 105355.

[53]

Yang, R.; Zhou, Y. M.; Xing, Y. Y.; Li, D.; Jiang, D. L.; Chen, M.; Shi, W. D.; Yuan, S. Q. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B: Environ. 2019, 253, 131–139.

[54]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[55]

Dang, J. E.; Yun, S. N.; Zhang, Y. W.; Yang, J. J.; Liu, Z. L.; Dang, C. W.; Wang, Y. H.; Deng, Y. Y. Constructing double-shell structured N-C-in-Co/N-C electrocatalysts with nanorod- and rhombic dodecahedron-shaped hollow morphologies to boost electrocatalytic activity for hydrogen evolution and triiodide reduction reaction. Chem. Eng. J. 2022, 449, 137854.

[56]

Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

[57]

Xiao, P.; Chen, W.; Wang, X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 2015, 5, 1500985.

[58]

Zeng, Y.; Zhao, M. T.; Huang, Z. H.; Zhu, W. J.; Zheng, J. X.; Jiang, Q.; Wang, Z. C.; Liang, H. F. Surface reconstruction of water splitting electrocatalysts. Adv. Energy Mater. 2022, 12, 2201713.

[59]

Liu, D.; Ai, H. Q.; Chen, M. P.; Zhou, P. F.; Li, B. W.; Liu, D.; Du, X. Y.; Lo, K. H.; Ng, K. W.; Wang, S. P. et al. Multi-phase heterostructure of CoNiP/CoxP for enhanced hydrogen evolution under alkaline and seawater conditions by promoting H2O dissociation. Small 2021, 17, 2007557.

[60]

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

[61]

Yang, Y. J.; Wu, D. X.; Yu, Y. H.; Li, J.; Rao, P.; Jia, C. M.; Liu, Z. X.; Chen, Q.; Huang, W.; Luo, J. M. et al. Bridge the activity and durability of ruthenium for hydrogen evolution reaction with the Ru-O-C link. Chem. Eng. J. 2022, 433, 134421.

[62]

Lin, Z. P.; Xiao, B. B.; Huang, M.; Yan, L. H.; Wang, Z. P.; Huang, Y. C.; Shen, S. J.; Zhang, Q. H.; Gu, L.; Zhong, W. W. Realizing negatively charged metal atoms through controllable d-electron transfer in ternary Ir1−xRhxSb intermetallic alloy for hydrogen evolution reaction. Adv. Energy Mater. 2022, 12, 2200855.

File
12274_2022_5339_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 October 2022
Revised: 16 November 2022
Accepted: 17 November 2022
Published: 23 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51601163, 22001081, and 22075236), the Natural Science Foundation of Fujian Province (No. 2021J011211), the Xiamen Municipal Bureau of Science and Technology (No. 3502Z20206070), the Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications (No. fma2018012), and Xiamen University.

Return